An orderly single-trial organization of population dynamics in premotor cortex predicts behavioral variability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ziqiang Wei, Hidehiko Inagaki, Nuo Li, Karel Svoboda, Shaul Druckmann

ABSTRACT

Animals are not simple input-output machines. Their responses to even very similar stimuli are variable. A key, long-standing question in neuroscience is to understand the neural correlates of such behavioral variability. To reveal these correlates, behavior and neural population activity must be related to one another on single trials. Such analysis is challenging due to the dynamical nature of brain function (e.g., in decision making), heterogeneity across neurons and limited sampling of the relevant neural population. By analyzing population recordings from mouse frontal cortex in perceptual decision-making tasks, we show that an analysis approach tailored to the coarse grain features of the dynamics is able to reveal previously unrecognized structure in the organization of population activity. This structure is similar on error and correct trials, suggesting dynamics that may be constrained by the underlying circuitry, is able to predict multiple aspects of behavioral variability and reveals long time-scale modulation of population activity. More... »

PAGES

216

References to SciGraph publications

  • 2013-05. The importance of mixed selectivity in complex cognitive tasks in NATURE
  • 2011-03. A reservoir of time constants for memory traces in cortical neurons in NATURE NEUROSCIENCE
  • 2016-12. History-dependent variability in population dynamics during evidence accumulation in cortex in NATURE NEUROSCIENCE
  • 2010-08. A new look at state-space models for neural data in JOURNAL OF COMPUTATIONAL NEUROSCIENCE
  • 2014-03. Cortical activity in the null space: permitting preparation without movement in NATURE NEUROSCIENCE
  • 2006-07. Executive control of countermanding saccades by the supplementary eye field in NATURE NEUROSCIENCE
  • 2008-09-11. Neural correlates, computation and behavioural impact of decision confidence in NATURE
  • 2015-12. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces in NATURE COMMUNICATIONS
  • 1999-06. Neuronal correlates of parametric working memory in the prefrontal cortex in NATURE
  • 2014-08. Neural constraints on learning in NATURE
  • 2017-05. Maintenance of persistent activity in a frontal thalamocortical loop in NATURE
  • 2012-05. Brain-wide neuronal dynamics during motor adaptation in zebrafish in NATURE
  • 2014-11. Dimensionality reduction for large-scale neural recordings in NATURE NEUROSCIENCE
  • 2015-03. A motor cortex circuit for motor planning and movement in NATURE
  • 2017-09. Structure in neural population recordings: an expected byproduct of simpler phenomena? in NATURE NEUROSCIENCE
  • 2016-06-14. Controlling many-body states by the electric-field effect in a two-dimensional material in NATURE
  • 2018-02. Posterior parietal cortex represents sensory history and mediates its effects on behaviour in NATURE
  • 2018-10. Inferring single-trial neural population dynamics using sequential auto-encoders in NATURE METHODS
  • 2016-10-27. Reorganization between preparatory and movement population responses in motor cortex in NATURE COMMUNICATIONS
  • 2014-12. A category-free neural population supports evolving demands during decision-making in NATURE NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-018-08141-6

    DOI

    http://dx.doi.org/10.1038/s41467-018-08141-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111333422

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30644387


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Janelia Research Campus, HHMI, 20147, Ashburn, VA, USA", 
                "The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wei", 
            "givenName": "Ziqiang", 
            "id": "sg:person.01052510727.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052510727.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute", 
              "id": "https://www.grid.ac/institutes/grid.413575.1", 
              "name": [
                "Janelia Research Campus, HHMI, 20147, Ashburn, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Inagaki", 
            "givenName": "Hidehiko", 
            "id": "sg:person.01105076005.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105076005.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Baylor College of Medicine", 
              "id": "https://www.grid.ac/institutes/grid.39382.33", 
              "name": [
                "Department of Neuroscience, Baylor College of Medicine, 77030, Houston, TX, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Nuo", 
            "id": "sg:person.01014074464.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014074464.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute", 
              "id": "https://www.grid.ac/institutes/grid.413575.1", 
              "name": [
                "Janelia Research Campus, HHMI, 20147, Ashburn, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Svoboda", 
            "givenName": "Karel", 
            "id": "sg:person.01010577452.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010577452.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lucile Packard Children's Hospital", 
              "id": "https://www.grid.ac/institutes/grid.414123.1", 
              "name": [
                "Janelia Research Campus, HHMI, 20147, Ashburn, VA, USA", 
                "Department of Neurobiology, Stanford University, 94304, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Druckmann", 
            "givenName": "Shaul", 
            "id": "sg:person.01263774774.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263774774.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nn.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001487563", 
              "https://doi.org/10.1038/nn.3865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001586526", 
              "https://doi.org/10.1038/nn1714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn1714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001586526", 
              "https://doi.org/10.1038/nn1714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002714407", 
              "https://doi.org/10.1038/nature12160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004794159", 
              "https://doi.org/10.1038/nature13665"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004813698", 
              "https://doi.org/10.1038/nn.4403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005134857", 
              "https://doi.org/10.1038/nature14178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2011.05.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006347366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.2171-10.2010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007047906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2014.05.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009273672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.00793.2014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009754729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.2752", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012681267", 
              "https://doi.org/10.1038/nn.2752"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8759", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013775004", 
              "https://doi.org/10.1038/ncomms8759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.111.2.333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015172769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.04677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019725007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.4761-07.2008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025284729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.neuro.29.051605.113038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026741897"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0896-6273(02)00937-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030466520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030976180", 
              "https://doi.org/10.1038/nature18453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033011537", 
              "https://doi.org/10.1038/nature11057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13239", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036509290", 
              "https://doi.org/10.1038/ncomms13239"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.90941.2008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043096982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-009-0179-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045328875", 
              "https://doi.org/10.1007/s10827-009-0179-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10827-009-0179-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045328875", 
              "https://doi.org/10.1007/s10827-009-0179-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045433215", 
              "https://doi.org/10.1038/nn.3776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2013.10.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047032767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047155391", 
              "https://doi.org/10.1038/20939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/20939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047155391", 
              "https://doi.org/10.1038/20939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1162/089976699300016674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047642158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/cercor/bhg100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050179831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biostatistics/kxj035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051189952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053155852", 
              "https://doi.org/10.1038/nature07200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3643", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053262686", 
              "https://doi.org/10.1038/nn.3643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.2001.86.4.1916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074893726"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085121553", 
              "https://doi.org/10.1038/nature22324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085121553", 
              "https://doi.org/10.1038/nature22324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085121553", 
              "https://doi.org/10.1038/nature22324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085121553", 
              "https://doi.org/10.1038/nature22324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2017.06.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090305041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091083444", 
              "https://doi.org/10.1038/nn.4617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091083444", 
              "https://doi.org/10.1038/nn.4617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100858787", 
              "https://doi.org/10.1038/nature25510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100858787", 
              "https://doi.org/10.1038/nature25510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.3152-17.2018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101851280"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106987090", 
              "https://doi.org/10.1038/s41592-018-0109-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106987090", 
              "https://doi.org/10.1038/s41592-018-0109-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106987090", 
              "https://doi.org/10.1038/s41592-018-0109-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106987090", 
              "https://doi.org/10.1038/s41592-018-0109-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41592-018-0109-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106987090", 
              "https://doi.org/10.1038/s41592-018-0109-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Animals are not simple input-output machines. Their responses to even very similar stimuli are variable. A key, long-standing question in neuroscience is to understand the neural correlates of such behavioral variability. To reveal these correlates, behavior and neural population activity must be related to one another on single trials. Such analysis is challenging due to the dynamical nature of brain function (e.g., in decision making), heterogeneity across neurons and limited sampling of the relevant neural population. By analyzing population recordings from mouse frontal cortex in perceptual decision-making tasks, we show that an analysis approach tailored to the coarse grain features of the dynamics is able to reveal previously unrecognized structure in the organization of population activity. This structure is similar on error and correct trials, suggesting dynamics that may be constrained by the underlying circuitry, is able to predict multiple aspects of behavioral variability and reveals long time-scale modulation of population activity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-018-08141-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7072891", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "name": "An orderly single-trial organization of population dynamics in premotor cortex predicts behavioral variability", 
        "pagination": "216", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "500d31aa6b632b3756ed9cf0bfff5ec6e3d733330a7cd34fbd8d014d5045d301"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30644387"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-018-08141-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111333422"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-018-08141-6", 
          "https://app.dimensions.ai/details/publication/pub.1111333422"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:42", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74942_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-018-08141-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08141-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08141-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08141-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08141-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    240 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-018-08141-6 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author N838891a9dcd74d818109e4259de5bd18
    4 schema:citation sg:pub.10.1007/s10827-009-0179-x
    5 sg:pub.10.1038/20939
    6 sg:pub.10.1038/nature07200
    7 sg:pub.10.1038/nature11057
    8 sg:pub.10.1038/nature12160
    9 sg:pub.10.1038/nature13665
    10 sg:pub.10.1038/nature14178
    11 sg:pub.10.1038/nature18453
    12 sg:pub.10.1038/nature22324
    13 sg:pub.10.1038/nature25510
    14 sg:pub.10.1038/ncomms13239
    15 sg:pub.10.1038/ncomms8759
    16 sg:pub.10.1038/nn.2752
    17 sg:pub.10.1038/nn.3643
    18 sg:pub.10.1038/nn.3776
    19 sg:pub.10.1038/nn.3865
    20 sg:pub.10.1038/nn.4403
    21 sg:pub.10.1038/nn.4617
    22 sg:pub.10.1038/nn1714
    23 sg:pub.10.1038/s41592-018-0109-9
    24 https://doi.org/10.1016/j.cub.2014.05.049
    25 https://doi.org/10.1016/j.neuron.2011.05.047
    26 https://doi.org/10.1016/j.neuron.2013.10.020
    27 https://doi.org/10.1016/j.neuron.2017.06.013
    28 https://doi.org/10.1016/s0896-6273(02)00937-6
    29 https://doi.org/10.1037/0033-295x.111.2.333
    30 https://doi.org/10.1093/biostatistics/kxj035
    31 https://doi.org/10.1093/cercor/bhg100
    32 https://doi.org/10.1146/annurev.neuro.29.051605.113038
    33 https://doi.org/10.1152/jn.00793.2014
    34 https://doi.org/10.1152/jn.2001.86.4.1916
    35 https://doi.org/10.1152/jn.90941.2008
    36 https://doi.org/10.1162/089976699300016674
    37 https://doi.org/10.1523/jneurosci.2171-10.2010
    38 https://doi.org/10.1523/jneurosci.3152-17.2018
    39 https://doi.org/10.1523/jneurosci.4761-07.2008
    40 https://doi.org/10.7554/elife.04677
    41 schema:datePublished 2019-12
    42 schema:datePublishedReg 2019-12-01
    43 schema:description Animals are not simple input-output machines. Their responses to even very similar stimuli are variable. A key, long-standing question in neuroscience is to understand the neural correlates of such behavioral variability. To reveal these correlates, behavior and neural population activity must be related to one another on single trials. Such analysis is challenging due to the dynamical nature of brain function (e.g., in decision making), heterogeneity across neurons and limited sampling of the relevant neural population. By analyzing population recordings from mouse frontal cortex in perceptual decision-making tasks, we show that an analysis approach tailored to the coarse grain features of the dynamics is able to reveal previously unrecognized structure in the organization of population activity. This structure is similar on error and correct trials, suggesting dynamics that may be constrained by the underlying circuitry, is able to predict multiple aspects of behavioral variability and reveals long time-scale modulation of population activity.
    44 schema:genre research_article
    45 schema:inLanguage en
    46 schema:isAccessibleForFree true
    47 schema:isPartOf N0a16b2ce55cc407d8dece0a87360b31d
    48 N1f6fcb67fa7149f48f5398c6d6a95918
    49 sg:journal.1043282
    50 schema:name An orderly single-trial organization of population dynamics in premotor cortex predicts behavioral variability
    51 schema:pagination 216
    52 schema:productId N593f7e13aefd462593b4528d2403182e
    53 N6b7c4bd8d8c441139d9b1a570bff382b
    54 N9c753f08ecb4473ba5fcdca63a79194e
    55 Na8a0979515bb419b801c6ac99c5bdc76
    56 Ne2984f45f17c44e1b832ef07ee3b39aa
    57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111333422
    58 https://doi.org/10.1038/s41467-018-08141-6
    59 schema:sdDatePublished 2019-04-11T08:42
    60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    61 schema:sdPublisher N617fa4dd524c4c9d8f7045b03f50f8f5
    62 schema:url https://www.nature.com/articles/s41467-018-08141-6
    63 sgo:license sg:explorer/license/
    64 sgo:sdDataset articles
    65 rdf:type schema:ScholarlyArticle
    66 N0a16b2ce55cc407d8dece0a87360b31d schema:issueNumber 1
    67 rdf:type schema:PublicationIssue
    68 N1f6fcb67fa7149f48f5398c6d6a95918 schema:volumeNumber 10
    69 rdf:type schema:PublicationVolume
    70 N593f7e13aefd462593b4528d2403182e schema:name doi
    71 schema:value 10.1038/s41467-018-08141-6
    72 rdf:type schema:PropertyValue
    73 N617fa4dd524c4c9d8f7045b03f50f8f5 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N6b7c4bd8d8c441139d9b1a570bff382b schema:name nlm_unique_id
    76 schema:value 101528555
    77 rdf:type schema:PropertyValue
    78 N7f16635faf004485bac9723577fa4831 rdf:first sg:person.01010577452.70
    79 rdf:rest Na43ec31431264796b76092815c466618
    80 N838891a9dcd74d818109e4259de5bd18 rdf:first sg:person.01052510727.24
    81 rdf:rest Nfae8688cf1e740138c9f68fe1768287c
    82 N99f2eb078349442bb1180113987e2fcd rdf:first sg:person.01014074464.73
    83 rdf:rest N7f16635faf004485bac9723577fa4831
    84 N9c753f08ecb4473ba5fcdca63a79194e schema:name dimensions_id
    85 schema:value pub.1111333422
    86 rdf:type schema:PropertyValue
    87 Na43ec31431264796b76092815c466618 rdf:first sg:person.01263774774.15
    88 rdf:rest rdf:nil
    89 Na8a0979515bb419b801c6ac99c5bdc76 schema:name readcube_id
    90 schema:value 500d31aa6b632b3756ed9cf0bfff5ec6e3d733330a7cd34fbd8d014d5045d301
    91 rdf:type schema:PropertyValue
    92 Ne2984f45f17c44e1b832ef07ee3b39aa schema:name pubmed_id
    93 schema:value 30644387
    94 rdf:type schema:PropertyValue
    95 Nfae8688cf1e740138c9f68fe1768287c rdf:first sg:person.01105076005.86
    96 rdf:rest N99f2eb078349442bb1180113987e2fcd
    97 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Medical and Health Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Neurosciences
    102 rdf:type schema:DefinedTerm
    103 sg:grant.7072891 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-08141-6
    104 rdf:type schema:MonetaryGrant
    105 sg:journal.1043282 schema:issn 2041-1723
    106 schema:name Nature Communications
    107 rdf:type schema:Periodical
    108 sg:person.01010577452.70 schema:affiliation https://www.grid.ac/institutes/grid.413575.1
    109 schema:familyName Svoboda
    110 schema:givenName Karel
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010577452.70
    112 rdf:type schema:Person
    113 sg:person.01014074464.73 schema:affiliation https://www.grid.ac/institutes/grid.39382.33
    114 schema:familyName Li
    115 schema:givenName Nuo
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014074464.73
    117 rdf:type schema:Person
    118 sg:person.01052510727.24 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    119 schema:familyName Wei
    120 schema:givenName Ziqiang
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052510727.24
    122 rdf:type schema:Person
    123 sg:person.01105076005.86 schema:affiliation https://www.grid.ac/institutes/grid.413575.1
    124 schema:familyName Inagaki
    125 schema:givenName Hidehiko
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105076005.86
    127 rdf:type schema:Person
    128 sg:person.01263774774.15 schema:affiliation https://www.grid.ac/institutes/grid.414123.1
    129 schema:familyName Druckmann
    130 schema:givenName Shaul
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263774774.15
    132 rdf:type schema:Person
    133 sg:pub.10.1007/s10827-009-0179-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045328875
    134 https://doi.org/10.1007/s10827-009-0179-x
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1038/20939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047155391
    137 https://doi.org/10.1038/20939
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1038/nature07200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053155852
    140 https://doi.org/10.1038/nature07200
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/nature11057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033011537
    143 https://doi.org/10.1038/nature11057
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nature12160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002714407
    146 https://doi.org/10.1038/nature12160
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/nature13665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004794159
    149 https://doi.org/10.1038/nature13665
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nature14178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005134857
    152 https://doi.org/10.1038/nature14178
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/nature18453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030976180
    155 https://doi.org/10.1038/nature18453
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/nature22324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085121553
    158 https://doi.org/10.1038/nature22324
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nature25510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100858787
    161 https://doi.org/10.1038/nature25510
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/ncomms13239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036509290
    164 https://doi.org/10.1038/ncomms13239
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/ncomms8759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013775004
    167 https://doi.org/10.1038/ncomms8759
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1038/nn.2752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012681267
    170 https://doi.org/10.1038/nn.2752
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1038/nn.3643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053262686
    173 https://doi.org/10.1038/nn.3643
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nn.3776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045433215
    176 https://doi.org/10.1038/nn.3776
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nn.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001487563
    179 https://doi.org/10.1038/nn.3865
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nn.4403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004813698
    182 https://doi.org/10.1038/nn.4403
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nn.4617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091083444
    185 https://doi.org/10.1038/nn.4617
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nn1714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001586526
    188 https://doi.org/10.1038/nn1714
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/s41592-018-0109-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106987090
    191 https://doi.org/10.1038/s41592-018-0109-9
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.cub.2014.05.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009273672
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.neuron.2011.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006347366
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.neuron.2013.10.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047032767
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.neuron.2017.06.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090305041
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/s0896-6273(02)00937-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030466520
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1037/0033-295x.111.2.333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015172769
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1093/biostatistics/kxj035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051189952
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1093/cercor/bhg100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050179831
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1146/annurev.neuro.29.051605.113038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026741897
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1152/jn.00793.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009754729
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1152/jn.2001.86.4.1916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074893726
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1152/jn.90941.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043096982
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1162/089976699300016674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047642158
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1523/jneurosci.2171-10.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007047906
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1523/jneurosci.3152-17.2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101851280
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1523/jneurosci.4761-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025284729
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.7554/elife.04677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019725007
    226 rdf:type schema:CreativeWork
    227 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
    228 schema:name Janelia Research Campus, HHMI, 20147, Ashburn, VA, USA
    229 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 21205, Baltimore, MD, USA
    230 rdf:type schema:Organization
    231 https://www.grid.ac/institutes/grid.39382.33 schema:alternateName Baylor College of Medicine
    232 schema:name Department of Neuroscience, Baylor College of Medicine, 77030, Houston, TX, USA
    233 rdf:type schema:Organization
    234 https://www.grid.ac/institutes/grid.413575.1 schema:alternateName Howard Hughes Medical Institute
    235 schema:name Janelia Research Campus, HHMI, 20147, Ashburn, VA, USA
    236 rdf:type schema:Organization
    237 https://www.grid.ac/institutes/grid.414123.1 schema:alternateName Lucile Packard Children's Hospital
    238 schema:name Department of Neurobiology, Stanford University, 94304, Stanford, CA, USA
    239 Janelia Research Campus, HHMI, 20147, Ashburn, VA, USA
    240 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...