Unusual synergistic effect in layered Ruddlesden−Popper oxide enables ultrafast hydrogen evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-11

AUTHORS

Yinlong Zhu, Hassan A. Tahini, Zhiwei Hu, Jie Dai, Yubo Chen, Hainan Sun, Wei Zhou, Meilin Liu, Sean C. Smith, Huanting Wang, Zongping Shao

ABSTRACT

Efficient electrocatalysts for hydrogen evolution reaction are key to realize clean hydrogen production through water splitting. As an important family of functional materials, transition metal oxides are generally believed inactive towards hydrogen evolution reaction, although many of them show high activity for oxygen evolution reaction. Here we report the remarkable electrocatalytic activity for hydrogen evolution reaction of a layered metal oxide, Ruddlesden-Popper-type Sr2RuO4 with alternative perovskite layer and rock-salt SrO layer, in an alkaline solution, which is comparable to those of the best electrocatalysts ever reported. By theoretical calculations, such excellent activity is attributed mainly to an unusual synergistic effect in the layered structure, whereby the (001) SrO-terminated surface cleaved in rock-salt layer facilitates a barrier-free water dissociation while the active apical oxygen site in perovskite layer promotes favorable hydrogen adsorption and evolution. Moreover, the activity of such layered oxide can be further improved by electrochemistry-induced activation. More... »

PAGES

149

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-08117-6

DOI

http://dx.doi.org/10.1038/s41467-018-08117-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111273822

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30635568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.484516.a", 
          "name": [
            "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yinlong", 
        "id": "sg:person.01276672164.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276672164.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 Australia", 
          "id": "http://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tahini", 
        "givenName": "Hassan A.", 
        "id": "sg:person.01046655125.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655125.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187 Dresden, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Zhiwei", 
        "id": "sg:person.01346405014.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346405014.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.484516.a", 
          "name": [
            "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Jie", 
        "id": "sg:person.016100610574.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016100610574.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore", 
          "id": "http://www.grid.ac/institutes/grid.59025.3b", 
          "name": [
            "School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yubo", 
        "id": "sg:person.012653601231.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012653601231.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.484516.a", 
          "name": [
            "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Hainan", 
        "id": "sg:person.011771123527.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011771123527.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China", 
          "id": "http://www.grid.ac/institutes/grid.484516.a", 
          "name": [
            "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Wei", 
        "id": "sg:person.016473632000.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016473632000.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 USA", 
          "id": "http://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Meilin", 
        "id": "sg:person.014644656140.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644656140.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 Australia", 
          "id": "http://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Sean C.", 
        "id": "sg:person.01124355707.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124355707.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Monash University, Clayton, VIC 3800 Australia", 
          "id": "http://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Department of Chemical Engineering, Monash University, Clayton, VIC 3800 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Huanting", 
        "id": "sg:person.01130251223.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130251223.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering, Curtin University, Perth, WA 6845 Australia", 
          "id": "http://www.grid.ac/institutes/grid.1032.0", 
          "name": [
            "Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China", 
            "Department of Chemical Engineering, Curtin University, Perth, WA 6845 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Zongping", 
        "id": "sg:person.01176302111.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176302111.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00251324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045797327", 
          "https://doi.org/10.1007/bf00251324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/372532a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033920975", 
          "https://doi.org/10.1038/372532a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826767", 
          "https://doi.org/10.1038/ncomms4783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085053966", 
          "https://doi.org/10.1038/ncomms14969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016119570", 
          "https://doi.org/10.1038/ncomms5191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051699857", 
          "https://doi.org/10.1038/ncomms5695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763348", 
          "https://doi.org/10.1038/nmat4512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01023602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047178933", 
          "https://doi.org/10.1007/bf01023602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045741773", 
          "https://doi.org/10.1038/nature11475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01872-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092621907", 
          "https://doi.org/10.1038/s41467-017-01872-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03858-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103149440", 
          "https://doi.org/10.1038/s41467-018-03858-w"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012568696", 
          "https://doi.org/10.1038/ncomms8261"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-11", 
    "datePublishedReg": "2019-01-11", 
    "description": "Efficient electrocatalysts for hydrogen evolution reaction are key to realize clean hydrogen production through water splitting. As an important family of functional materials, transition metal oxides are generally believed inactive towards hydrogen evolution reaction, although many of them show high activity for oxygen evolution reaction. Here we report the remarkable electrocatalytic activity for hydrogen evolution reaction of a layered metal oxide, Ruddlesden-Popper-type Sr2RuO4 with alternative perovskite layer and rock-salt SrO layer, in an alkaline solution, which is comparable to those of the best electrocatalysts ever reported. By theoretical calculations, such excellent activity is attributed mainly to an unusual synergistic effect in the layered structure, whereby the (001) SrO-terminated surface cleaved in rock-salt layer facilitates a barrier-free water dissociation while the active apical oxygen site in perovskite layer promotes favorable hydrogen adsorption and evolution. Moreover, the activity of such layered oxide can be further improved by electrochemistry-induced activation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-08117-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8153222", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "hydrogen evolution reaction", 
      "evolution reaction", 
      "unusual synergistic effect", 
      "perovskite layer", 
      "metal oxides", 
      "favorable hydrogen adsorption", 
      "remarkable electrocatalytic activity", 
      "such excellent activity", 
      "oxygen evolution reaction", 
      "SrO-terminated surface", 
      "clean hydrogen production", 
      "transition metal oxides", 
      "efficient electrocatalysts", 
      "water splitting", 
      "electrocatalytic activity", 
      "synergistic effect", 
      "hydrogen evolution", 
      "good electrocatalyst", 
      "water dissociation", 
      "hydrogen adsorption", 
      "hydrogen production", 
      "functional materials", 
      "alkaline solution", 
      "excellent activity", 
      "rock salt layers", 
      "Ruddlesden-Popper", 
      "SrO layers", 
      "oxygen sites", 
      "electrocatalysts", 
      "high activity", 
      "theoretical calculations", 
      "layered structure", 
      "reaction", 
      "oxide", 
      "type Sr", 
      "layer", 
      "apical oxygen sites", 
      "important family", 
      "RuO", 
      "adsorption", 
      "dissociation", 
      "splitting", 
      "surface", 
      "activity", 
      "materials", 
      "calculations", 
      "solution", 
      "structure", 
      "Sr", 
      "production", 
      "effect", 
      "sites", 
      "evolution", 
      "activation", 
      "family", 
      "alternative perovskite layer", 
      "rock-salt SrO layer", 
      "barrier-free water dissociation", 
      "active apical oxygen site", 
      "electrochemistry-induced activation", 
      "ultrafast hydrogen evolution"
    ], 
    "name": "Unusual synergistic effect in layered Ruddlesden\u2212Popper oxide enables ultrafast hydrogen evolution", 
    "pagination": "149", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111273822"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-08117-6"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30635568"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-08117-6", 
      "https://app.dimensions.ai/details/publication/pub.1111273822"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_825.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-08117-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08117-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08117-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08117-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08117-6'


 

This table displays all metadata directly associated to this object as RDF triples.

265 TRIPLES      22 PREDICATES      100 URIs      79 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-08117-6 schema:about anzsrc-for:03
2 anzsrc-for:0302
3 anzsrc-for:0306
4 schema:author N4a71aceecf5d4e9bacf63cf98b25fb59
5 schema:citation sg:pub.10.1007/bf00251324
6 sg:pub.10.1007/bf01023602
7 sg:pub.10.1038/372532a0
8 sg:pub.10.1038/nature11475
9 sg:pub.10.1038/ncomms14969
10 sg:pub.10.1038/ncomms4783
11 sg:pub.10.1038/ncomms5191
12 sg:pub.10.1038/ncomms5695
13 sg:pub.10.1038/ncomms8261
14 sg:pub.10.1038/nmat4512
15 sg:pub.10.1038/s41467-017-01872-y
16 sg:pub.10.1038/s41467-018-03858-w
17 schema:datePublished 2019-01-11
18 schema:datePublishedReg 2019-01-11
19 schema:description Efficient electrocatalysts for hydrogen evolution reaction are key to realize clean hydrogen production through water splitting. As an important family of functional materials, transition metal oxides are generally believed inactive towards hydrogen evolution reaction, although many of them show high activity for oxygen evolution reaction. Here we report the remarkable electrocatalytic activity for hydrogen evolution reaction of a layered metal oxide, Ruddlesden-Popper-type Sr<sub>2</sub>RuO<sub>4</sub> with alternative perovskite layer and rock-salt SrO layer, in an alkaline solution, which is comparable to those of the best electrocatalysts ever reported. By theoretical calculations, such excellent activity is attributed mainly to an unusual synergistic effect in the layered structure, whereby the (001) SrO-terminated surface cleaved in rock-salt layer facilitates a barrier-free water dissociation while the active apical oxygen site in perovskite layer promotes favorable hydrogen adsorption and evolution. Moreover, the activity of such layered oxide can be further improved by electrochemistry-induced activation.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N938d5dd496274982989158fccb5c90bf
24 Nbbbd223cff244552b049680bf6f20157
25 sg:journal.1043282
26 schema:keywords RuO
27 Ruddlesden-Popper
28 Sr
29 SrO layers
30 SrO-terminated surface
31 activation
32 active apical oxygen site
33 activity
34 adsorption
35 alkaline solution
36 alternative perovskite layer
37 apical oxygen sites
38 barrier-free water dissociation
39 calculations
40 clean hydrogen production
41 dissociation
42 effect
43 efficient electrocatalysts
44 electrocatalysts
45 electrocatalytic activity
46 electrochemistry-induced activation
47 evolution
48 evolution reaction
49 excellent activity
50 family
51 favorable hydrogen adsorption
52 functional materials
53 good electrocatalyst
54 high activity
55 hydrogen adsorption
56 hydrogen evolution
57 hydrogen evolution reaction
58 hydrogen production
59 important family
60 layer
61 layered structure
62 materials
63 metal oxides
64 oxide
65 oxygen evolution reaction
66 oxygen sites
67 perovskite layer
68 production
69 reaction
70 remarkable electrocatalytic activity
71 rock salt layers
72 rock-salt SrO layer
73 sites
74 solution
75 splitting
76 structure
77 such excellent activity
78 surface
79 synergistic effect
80 theoretical calculations
81 transition metal oxides
82 type Sr
83 ultrafast hydrogen evolution
84 unusual synergistic effect
85 water dissociation
86 water splitting
87 schema:name Unusual synergistic effect in layered Ruddlesden−Popper oxide enables ultrafast hydrogen evolution
88 schema:pagination 149
89 schema:productId N3bafc9165ae245d097318c8da4d3d62b
90 N4aa3deb5fe66434996b1d08ce295e41e
91 N95fc7497b87c417eb1d50b1afbf35aec
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111273822
93 https://doi.org/10.1038/s41467-018-08117-6
94 schema:sdDatePublished 2021-11-01T18:36
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N9fec54ddda3148bdb6b68feede44e959
97 schema:url https://doi.org/10.1038/s41467-018-08117-6
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N204c682cf0124e238d422b373daa754d rdf:first sg:person.012653601231.99
102 rdf:rest N922186996aa440969b75a66257d454ef
103 N255f95f597b8439ca2d396504563a50c rdf:first sg:person.01130251223.29
104 rdf:rest N8b9bb3e4f75148079ce8d29337130f1d
105 N2eaff89fe1844522af509b8131bc0bc8 rdf:first sg:person.01346405014.95
106 rdf:rest N5589753ca6244e1e8632da88b0691cd9
107 N3bafc9165ae245d097318c8da4d3d62b schema:name pubmed_id
108 schema:value 30635568
109 rdf:type schema:PropertyValue
110 N4a71aceecf5d4e9bacf63cf98b25fb59 rdf:first sg:person.01276672164.18
111 rdf:rest Ndca405bf87be49d7862711086d845f89
112 N4aa3deb5fe66434996b1d08ce295e41e schema:name doi
113 schema:value 10.1038/s41467-018-08117-6
114 rdf:type schema:PropertyValue
115 N5589753ca6244e1e8632da88b0691cd9 rdf:first sg:person.016100610574.89
116 rdf:rest N204c682cf0124e238d422b373daa754d
117 N5c97bb599abf45318c20ad306bf44629 rdf:first sg:person.01124355707.27
118 rdf:rest N255f95f597b8439ca2d396504563a50c
119 N655dc5933aa843b5b7ab6a35df906d0d rdf:first sg:person.014644656140.53
120 rdf:rest N5c97bb599abf45318c20ad306bf44629
121 N8b9bb3e4f75148079ce8d29337130f1d rdf:first sg:person.01176302111.39
122 rdf:rest rdf:nil
123 N922186996aa440969b75a66257d454ef rdf:first sg:person.011771123527.45
124 rdf:rest Nc965ac54d2c74af7a96290f209fa08b6
125 N938d5dd496274982989158fccb5c90bf schema:volumeNumber 10
126 rdf:type schema:PublicationVolume
127 N95fc7497b87c417eb1d50b1afbf35aec schema:name dimensions_id
128 schema:value pub.1111273822
129 rdf:type schema:PropertyValue
130 N9fec54ddda3148bdb6b68feede44e959 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Nbbbd223cff244552b049680bf6f20157 schema:issueNumber 1
133 rdf:type schema:PublicationIssue
134 Nc965ac54d2c74af7a96290f209fa08b6 rdf:first sg:person.016473632000.42
135 rdf:rest N655dc5933aa843b5b7ab6a35df906d0d
136 Ndca405bf87be49d7862711086d845f89 rdf:first sg:person.01046655125.28
137 rdf:rest N2eaff89fe1844522af509b8131bc0bc8
138 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
139 schema:name Chemical Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
142 schema:name Inorganic Chemistry
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
145 schema:name Physical Chemistry (incl. Structural)
146 rdf:type schema:DefinedTerm
147 sg:grant.8153222 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-08117-6
148 rdf:type schema:MonetaryGrant
149 sg:journal.1043282 schema:issn 2041-1723
150 schema:name Nature Communications
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.01046655125.28 schema:affiliation grid-institutes:grid.1001.0
154 schema:familyName Tahini
155 schema:givenName Hassan A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046655125.28
157 rdf:type schema:Person
158 sg:person.01124355707.27 schema:affiliation grid-institutes:grid.1001.0
159 schema:familyName Smith
160 schema:givenName Sean C.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124355707.27
162 rdf:type schema:Person
163 sg:person.01130251223.29 schema:affiliation grid-institutes:grid.1002.3
164 schema:familyName Wang
165 schema:givenName Huanting
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130251223.29
167 rdf:type schema:Person
168 sg:person.01176302111.39 schema:affiliation grid-institutes:grid.1032.0
169 schema:familyName Shao
170 schema:givenName Zongping
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176302111.39
172 rdf:type schema:Person
173 sg:person.011771123527.45 schema:affiliation grid-institutes:grid.484516.a
174 schema:familyName Sun
175 schema:givenName Hainan
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011771123527.45
177 rdf:type schema:Person
178 sg:person.012653601231.99 schema:affiliation grid-institutes:grid.59025.3b
179 schema:familyName Chen
180 schema:givenName Yubo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012653601231.99
182 rdf:type schema:Person
183 sg:person.01276672164.18 schema:affiliation grid-institutes:grid.484516.a
184 schema:familyName Zhu
185 schema:givenName Yinlong
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276672164.18
187 rdf:type schema:Person
188 sg:person.01346405014.95 schema:affiliation grid-institutes:grid.419507.e
189 schema:familyName Hu
190 schema:givenName Zhiwei
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346405014.95
192 rdf:type schema:Person
193 sg:person.014644656140.53 schema:affiliation grid-institutes:grid.213917.f
194 schema:familyName Liu
195 schema:givenName Meilin
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014644656140.53
197 rdf:type schema:Person
198 sg:person.016100610574.89 schema:affiliation grid-institutes:grid.484516.a
199 schema:familyName Dai
200 schema:givenName Jie
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016100610574.89
202 rdf:type schema:Person
203 sg:person.016473632000.42 schema:affiliation grid-institutes:grid.484516.a
204 schema:familyName Zhou
205 schema:givenName Wei
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016473632000.42
207 rdf:type schema:Person
208 sg:pub.10.1007/bf00251324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045797327
209 https://doi.org/10.1007/bf00251324
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/bf01023602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047178933
212 https://doi.org/10.1007/bf01023602
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/372532a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033920975
215 https://doi.org/10.1038/372532a0
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/nature11475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045741773
218 https://doi.org/10.1038/nature11475
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/ncomms14969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085053966
221 https://doi.org/10.1038/ncomms14969
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/ncomms4783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003826767
224 https://doi.org/10.1038/ncomms4783
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/ncomms5191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016119570
227 https://doi.org/10.1038/ncomms5191
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/ncomms5695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051699857
230 https://doi.org/10.1038/ncomms5695
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/ncomms8261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012568696
233 https://doi.org/10.1038/ncomms8261
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nmat4512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021763348
236 https://doi.org/10.1038/nmat4512
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/s41467-017-01872-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1092621907
239 https://doi.org/10.1038/s41467-017-01872-y
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/s41467-018-03858-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1103149440
242 https://doi.org/10.1038/s41467-018-03858-w
243 rdf:type schema:CreativeWork
244 grid-institutes:grid.1001.0 schema:alternateName Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 Australia
245 schema:name Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 Australia
246 rdf:type schema:Organization
247 grid-institutes:grid.1002.3 schema:alternateName Department of Chemical Engineering, Monash University, Clayton, VIC 3800 Australia
248 schema:name Department of Chemical Engineering, Monash University, Clayton, VIC 3800 Australia
249 rdf:type schema:Organization
250 grid-institutes:grid.1032.0 schema:alternateName Department of Chemical Engineering, Curtin University, Perth, WA 6845 Australia
251 schema:name Department of Chemical Engineering, Curtin University, Perth, WA 6845 Australia
252 Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China
253 rdf:type schema:Organization
254 grid-institutes:grid.213917.f schema:alternateName Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 USA
255 schema:name Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 USA
256 rdf:type schema:Organization
257 grid-institutes:grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187 Dresden, Germany
258 schema:name Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187 Dresden, Germany
259 rdf:type schema:Organization
260 grid-institutes:grid.484516.a schema:alternateName Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China
261 schema:name Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, 210009 Nanjing, P.R. China
262 rdf:type schema:Organization
263 grid-institutes:grid.59025.3b schema:alternateName School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
264 schema:name School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798 Singapore
265 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...