Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Mayukh Mondal, Jaume Bertranpetit, Oscar Lao

ABSTRACT

Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics. More... »

PAGES

246

Journal

TITLE

Nature Communications

ISSUE

1

VOLUME

10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-08089-7

DOI

http://dx.doi.org/10.1038/s41467-018-08089-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111348234

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30651539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tartu", 
          "id": "https://www.grid.ac/institutes/grid.10939.32", 
          "name": [
            "Institute of Genomics, University of Tartu, Riia 23b Tartu, 51010, Tartu, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mondal", 
        "givenName": "Mayukh", 
        "id": "sg:person.0636676764.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636676764.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pompeu Fabra University", 
          "id": "https://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bertranpetit", 
        "givenName": "Jaume", 
        "id": "sg:person.0604654434.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604654434.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pompeu Fabra University", 
          "id": "https://www.grid.ac/institutes/grid.5612.0", 
          "name": [
            "CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixach 4, 08028, Barcelona, Spain", 
            "Universitat Pompeu Fabra (UPF), 08003, Barcelona, Catalonia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lao", 
        "givenName": "Oscar", 
        "id": "sg:person.0656422734.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656422734.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.aad2149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000012445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661742", 
          "https://doi.org/10.1038/nature11632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001458962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2016.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002382896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhevol.2005.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002587751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhevol.2005.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002587751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003204872", 
          "https://doi.org/10.1038/ng.3559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2015.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003233667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005678365", 
          "https://doi.org/10.1038/nature19310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005678365", 
          "https://doi.org/10.1038/nature19310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006142507", 
          "https://doi.org/10.1038/nature18299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.145037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006334147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.145037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006334147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2041-210x.2011.00179.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006883397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007037612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008608864", 
          "https://doi.org/10.1038/ng.3621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010457967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1224344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013028677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016472358", 
          "https://doi.org/10.1038/nature12886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812064", 
          "https://doi.org/10.1038/nature15393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024096700", 
          "https://doi.org/10.1038/nature17993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025005893", 
          "https://doi.org/10.1038/nature18964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025119768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2016.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026174633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.20188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027833563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030600039", 
          "https://doi.org/10.1038/nature16544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2014.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031965131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2009.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036883323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.196634.115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036990258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037006501", 
          "https://doi.org/10.1038/nature19792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2010.04690.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038718346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2010.04690.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038718346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038901838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247164", 
          "https://doi.org/10.1038/nature10231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.141846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046384562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.141846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046384562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046660436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050205294", 
          "https://doi.org/10.1038/nature09710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.148213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050809713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.112.148213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050809713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1211177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052025136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053200083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5705/ss.202015.0340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084001449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.192708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084344353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.192708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084344353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.116.192708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084344353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2017.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085142860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms16046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090342462", 
          "https://doi.org/10.1038/ncomms16046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2017.08.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091895025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aao6266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092036091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aao1887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092105301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aao1887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092105301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101534040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101534040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101534040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101534040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2018.02.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101534040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/292581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101886874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/292581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101886874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/292581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101886874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0455-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106285731", 
          "https://doi.org/10.1038/s41586-018-0455-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0455-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106285731", 
          "https://doi.org/10.1038/s41586-018-0455-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0455-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106285731", 
          "https://doi.org/10.1038/s41586-018-0455-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0455-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106285731", 
          "https://doi.org/10.1038/s41586-018-0455-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41586-018-0455-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106285731", 
          "https://doi.org/10.1038/s41586-018-0455-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b14835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108496302"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-08089-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania", 
    "pagination": "246", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79048c31dbe08f18e772278aced5d648fc61a395229f63331d809599ba35c77d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30651539"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-08089-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111348234"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-08089-7", 
      "https://app.dimensions.ai/details/publication/pub.1111348234"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74928_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-08089-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08089-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08089-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08089-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08089-7'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      79 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-08089-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N70d95c83f3ac490f8d81032ae506eb92
4 schema:citation sg:pub.10.1038/nature09710
5 sg:pub.10.1038/nature10231
6 sg:pub.10.1038/nature11632
7 sg:pub.10.1038/nature12886
8 sg:pub.10.1038/nature14539
9 sg:pub.10.1038/nature15393
10 sg:pub.10.1038/nature16544
11 sg:pub.10.1038/nature17993
12 sg:pub.10.1038/nature18299
13 sg:pub.10.1038/nature18964
14 sg:pub.10.1038/nature19310
15 sg:pub.10.1038/nature19792
16 sg:pub.10.1038/ncomms16046
17 sg:pub.10.1038/ng.3559
18 sg:pub.10.1038/ng.3621
19 sg:pub.10.1038/s41586-018-0455-x
20 https://doi.org/10.1002/ajpa.20188
21 https://doi.org/10.1016/j.ajhg.2009.05.001
22 https://doi.org/10.1016/j.ajhg.2014.12.029
23 https://doi.org/10.1016/j.ajhg.2015.01.006
24 https://doi.org/10.1016/j.ajhg.2016.07.002
25 https://doi.org/10.1016/j.ajhg.2017.04.002
26 https://doi.org/10.1016/j.cell.2017.08.049
27 https://doi.org/10.1016/j.cell.2018.02.031
28 https://doi.org/10.1016/j.cub.2016.03.037
29 https://doi.org/10.1016/j.jhevol.2005.04.006
30 https://doi.org/10.1093/bioinformatics/18.2.337
31 https://doi.org/10.1101/292581
32 https://doi.org/10.1101/gr.196634.115
33 https://doi.org/10.1111/j.1365-294x.2010.04690.x
34 https://doi.org/10.1111/j.2041-210x.2011.00179.x
35 https://doi.org/10.1126/science.1188021
36 https://doi.org/10.1126/science.1211177
37 https://doi.org/10.1126/science.1224344
38 https://doi.org/10.1126/science.aad2149
39 https://doi.org/10.1126/science.aao1887
40 https://doi.org/10.1126/science.aao6266
41 https://doi.org/10.1201/b14835
42 https://doi.org/10.1371/journal.pcbi.0030110
43 https://doi.org/10.1371/journal.pcbi.1002803
44 https://doi.org/10.1371/journal.pcbi.1004845
45 https://doi.org/10.1371/journal.pgen.1000695
46 https://doi.org/10.1371/journal.pgen.1003905
47 https://doi.org/10.1371/journal.pgen.1005550
48 https://doi.org/10.1371/journal.pgen.1005877
49 https://doi.org/10.1534/genetics.112.141846
50 https://doi.org/10.1534/genetics.112.145037
51 https://doi.org/10.1534/genetics.112.148213
52 https://doi.org/10.1534/genetics.116.192708
53 https://doi.org/10.5705/ss.202015.0340
54 schema:datePublished 2019-12
55 schema:datePublishedReg 2019-12-01
56 schema:description Since anatomically modern humans dispersed Out of Africa, the evolutionary history of Eurasian populations has been marked by introgressions from presently extinct hominins. Some of these introgressions have been identified using sequenced ancient genomes (Neanderthal and Denisova). Other introgressions have been proposed for still unidentified groups using the genetic diversity present in current human populations. We built a demographic model based on deep learning in an Approximate Bayesian Computation framework to infer the evolutionary history of Eurasian populations including past introgression events in Out of Africa populations fitting the current genetic evidence. In addition to the reported Neanderthal and Denisovan introgressions, our results support a third introgression in all Asian and Oceanian populations from an archaic population. This population is either related to the Neanderthal-Denisova clade or diverged early from the Denisova lineage. We propose the use of deep learning methods for clarifying situations with high complexity in evolutionary genomics.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree true
60 schema:isPartOf N1e85b637301643618d5005167608958d
61 N84e0094bd06248e59b9c34ab8e99d208
62 sg:journal.1043282
63 schema:name Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania
64 schema:pagination 246
65 schema:productId N476ec7aac1b94159aa1a8269caa6d825
66 N4f571ac8dad346e9819e6d0756060c3f
67 N91b5d76f84df43d184a6e95797e1a2a4
68 Nbf174dd4e4b0471fa479efb16dd96fc6
69 Nf1b101ba0cc249a98d5d86f0caaf4ab9
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111348234
71 https://doi.org/10.1038/s41467-018-08089-7
72 schema:sdDatePublished 2019-04-11T08:42
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher N1ebc6a78835645249c0cacaedd633f4d
75 schema:url https://www.nature.com/articles/s41467-018-08089-7
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N0612b33ec8de4f81b3e1ab66f3665f36 rdf:first sg:person.0604654434.69
80 rdf:rest Nb4df481cee2146c3baacb1b73baaf966
81 N1e85b637301643618d5005167608958d schema:volumeNumber 10
82 rdf:type schema:PublicationVolume
83 N1ebc6a78835645249c0cacaedd633f4d schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N476ec7aac1b94159aa1a8269caa6d825 schema:name nlm_unique_id
86 schema:value 101528555
87 rdf:type schema:PropertyValue
88 N4f571ac8dad346e9819e6d0756060c3f schema:name doi
89 schema:value 10.1038/s41467-018-08089-7
90 rdf:type schema:PropertyValue
91 N70d95c83f3ac490f8d81032ae506eb92 rdf:first sg:person.0636676764.25
92 rdf:rest N0612b33ec8de4f81b3e1ab66f3665f36
93 N84e0094bd06248e59b9c34ab8e99d208 schema:issueNumber 1
94 rdf:type schema:PublicationIssue
95 N91b5d76f84df43d184a6e95797e1a2a4 schema:name readcube_id
96 schema:value 79048c31dbe08f18e772278aced5d648fc61a395229f63331d809599ba35c77d
97 rdf:type schema:PropertyValue
98 Nb4df481cee2146c3baacb1b73baaf966 rdf:first sg:person.0656422734.02
99 rdf:rest rdf:nil
100 Nbf174dd4e4b0471fa479efb16dd96fc6 schema:name dimensions_id
101 schema:value pub.1111348234
102 rdf:type schema:PropertyValue
103 Nf1b101ba0cc249a98d5d86f0caaf4ab9 schema:name pubmed_id
104 schema:value 30651539
105 rdf:type schema:PropertyValue
106 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
107 schema:name Biological Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
110 schema:name Genetics
111 rdf:type schema:DefinedTerm
112 sg:journal.1043282 schema:issn 2041-1723
113 schema:name Nature Communications
114 rdf:type schema:Periodical
115 sg:person.0604654434.69 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
116 schema:familyName Bertranpetit
117 schema:givenName Jaume
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604654434.69
119 rdf:type schema:Person
120 sg:person.0636676764.25 schema:affiliation https://www.grid.ac/institutes/grid.10939.32
121 schema:familyName Mondal
122 schema:givenName Mayukh
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636676764.25
124 rdf:type schema:Person
125 sg:person.0656422734.02 schema:affiliation https://www.grid.ac/institutes/grid.5612.0
126 schema:familyName Lao
127 schema:givenName Oscar
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0656422734.02
129 rdf:type schema:Person
130 sg:pub.10.1038/nature09710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050205294
131 https://doi.org/10.1038/nature09710
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature10231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247164
134 https://doi.org/10.1038/nature10231
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
137 https://doi.org/10.1038/nature11632
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature12886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016472358
140 https://doi.org/10.1038/nature12886
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
143 https://doi.org/10.1038/nature14539
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
146 https://doi.org/10.1038/nature15393
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature16544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030600039
149 https://doi.org/10.1038/nature16544
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nature17993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024096700
152 https://doi.org/10.1038/nature17993
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature18299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006142507
155 https://doi.org/10.1038/nature18299
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nature18964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025005893
158 https://doi.org/10.1038/nature18964
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature19310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005678365
161 https://doi.org/10.1038/nature19310
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature19792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037006501
164 https://doi.org/10.1038/nature19792
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/ncomms16046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090342462
167 https://doi.org/10.1038/ncomms16046
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ng.3559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003204872
170 https://doi.org/10.1038/ng.3559
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/ng.3621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008608864
173 https://doi.org/10.1038/ng.3621
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/s41586-018-0455-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1106285731
176 https://doi.org/10.1038/s41586-018-0455-x
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/ajpa.20188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027833563
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.ajhg.2009.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036883323
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.ajhg.2014.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031965131
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.ajhg.2015.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003233667
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.ajhg.2016.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026174633
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.ajhg.2017.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085142860
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.cell.2017.08.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091895025
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.cell.2018.02.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101534040
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.cub.2016.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002382896
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.jhevol.2005.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002587751
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/bioinformatics/18.2.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789793
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/292581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101886874
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1101/gr.196634.115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036990258
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1365-294x.2010.04690.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038718346
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.2041-210x.2011.00179.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006883397
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1188021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002597304
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1211177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052025136
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1224344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028677
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.aad2149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000012445
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.aao1887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092105301
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.aao6266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092036091
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1201/b14835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108496302
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1371/journal.pcbi.0030110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053200083
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pcbi.1002803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010457967
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1371/journal.pcbi.1004845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038901838
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1371/journal.pgen.1000695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046660436
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1371/journal.pgen.1003905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007037612
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1371/journal.pgen.1005550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001458962
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1371/journal.pgen.1005877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025119768
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1534/genetics.112.141846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046384562
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1534/genetics.112.145037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006334147
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1534/genetics.112.148213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050809713
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1534/genetics.116.192708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084344353
243 rdf:type schema:CreativeWork
244 https://doi.org/10.5705/ss.202015.0340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084001449
245 rdf:type schema:CreativeWork
246 https://www.grid.ac/institutes/grid.10939.32 schema:alternateName University of Tartu
247 schema:name Institute of Genomics, University of Tartu, Riia 23b Tartu, 51010, Tartu, Estonia
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.5612.0 schema:alternateName Pompeu Fabra University
250 schema:name CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixach 4, 08028, Barcelona, Spain
251 Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Doctor Aiguader 88 (PRBB), 08003, Barcelona, Catalonia, Spain
252 Universitat Pompeu Fabra (UPF), 08003, Barcelona, Catalonia, Spain
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...