Pseudodoping of a metallic two-dimensional material by the supporting substrate View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Bin Shao, Andreas Eich, Charlotte Sanders, Arlette S. Ngankeu, Marco Bianchi, Philip Hofmann, Alexander A. Khajetoorians, Tim O. Wehling

ABSTRACT

Charge transfers resulting from weak bondings between two-dimensional materials and the supporting substrates are often tacitly associated with their work function differences. In this context, two-dimensional materials could be normally doped at relatively low levels. Here, we demonstrate how even weak hybridization with substrates can lead to an apparent heavy doping, using the example of monolayer 1H-TaS2 grown on Au(111). Ab-initio calculations show that sizable changes in Fermi areas can arise, while the transferred charge between substrate and two-dimensional material is much smaller than the variation of Fermi areas suggests. This mechanism, which we refer to as pseudodoping, is associated with non-linear energy-dependent shifts of electronic spectra, which our scanning tunneling spectroscopy experiments reveal for clean and defective TaS2 monolayer on Au(111). The influence of pseudodoping on the formation of many-body states in two-dimensional metallic materials is analyzed, shedding light on utilizing pseudodoping to control electronic phase diagrams. More... »

PAGES

180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-08088-8

DOI

http://dx.doi.org/10.1038/s41467-018-08088-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111273812

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30643132


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bremen", 
          "id": "https://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Bremen, Otto-Hahn-Allee 1, 28359, Bremen, Germany", 
            "Bremen Center for Computational Materials Science, Universit\u00e4t Bremen, Am Fallturm 1a, 28359, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Bin", 
        "id": "sg:person.016617105721.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617105721.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eich", 
        "givenName": "Andreas", 
        "id": "sg:person.01000727530.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000727530.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rutherford Appleton Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.76978.37", 
          "name": [
            "Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell, OX11 0QX, Didcot, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanders", 
        "givenName": "Charlotte", 
        "id": "sg:person.012765265520.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765265520.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ngankeu", 
        "givenName": "Arlette S.", 
        "id": "sg:person.011630606261.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630606261.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bianchi", 
        "givenName": "Marco", 
        "id": "sg:person.01321432222.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321432222.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aarhus University", 
          "id": "https://www.grid.ac/institutes/grid.7048.b", 
          "name": [
            "Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmann", 
        "givenName": "Philip", 
        "id": "sg:person.0737703544.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737703544.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khajetoorians", 
        "givenName": "Alexander A.", 
        "id": "sg:person.01331027551.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331027551.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bremen", 
          "id": "https://www.grid.ac/institutes/grid.7704.4", 
          "name": [
            "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Bremen, Otto-Hahn-Allee 1, 28359, Bremen, Germany", 
            "Bremen Center for Computational Materials Science, Universit\u00e4t Bremen, Am Fallturm 1a, 28359, Bremen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wehling", 
        "givenName": "Tim O.", 
        "id": "sg:person.01234461525.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234461525.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2015.314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000771640", 
          "https://doi.org/10.1038/nnano.2015.314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2008.01.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001357106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cs00102h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004283723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0256-307x/29/3/037402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005911355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006127136", 
          "https://doi.org/10.1038/nmat4153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006940404", 
          "https://doi.org/10.1038/nphys3527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4740268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007486446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/6/40/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008499271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012502167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b02101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013770850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014123450", 
          "https://doi.org/10.1038/nnano.2015.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b00648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015129891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.041116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017468720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.041116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017468720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027503338", 
          "https://doi.org/10.1038/ncomms14074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.026803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034296964", 
          "https://doi.org/10.1038/nnano.2014.323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502848102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036398807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aac9439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041698293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1230512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043112732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043523728", 
          "https://doi.org/10.1038/ncomms5247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044734228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052482923", 
          "https://doi.org/10.1038/nature13894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.323539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057922316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.161408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.161408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.8.3719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.8.3719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.041407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.041407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060642773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.081404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.081404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1228006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.33.2696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063051813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086006401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.235121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086006401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2018.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101632539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2018.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101632539"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Charge transfers resulting from weak bondings between two-dimensional materials and the supporting substrates are often tacitly associated with their work function differences. In this context, two-dimensional materials could be normally doped at relatively low levels. Here, we demonstrate how even weak hybridization with substrates can lead to an apparent heavy doping, using the example of monolayer 1H-TaS2 grown on Au(111). Ab-initio calculations show that sizable changes in Fermi areas can arise, while the transferred charge between substrate and two-dimensional material is much smaller than the variation of Fermi areas suggests. This mechanism, which we refer to as pseudodoping, is associated with non-linear energy-dependent shifts of electronic spectra, which our scanning tunneling spectroscopy experiments reveal for clean and defective TaS2 monolayer on Au(111). The influence of pseudodoping on the formation of many-body states in two-dimensional metallic materials is analyzed, shedding light on utilizing pseudodoping to control electronic phase diagrams.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-08088-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3764871", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3711679", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3797019", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4322646", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Pseudodoping of a metallic two-dimensional material by the supporting substrate", 
    "pagination": "180", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c519232de262efd55c8edb3188728f92f1333305fdf7df501a41336fda941315"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30643132"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-08088-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111273812"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-08088-8", 
      "https://app.dimensions.ai/details/publication/pub.1111273812"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000320_0000000320/records_101378_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-08088-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08088-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08088-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08088-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08088-8'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-08088-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N10b4338be8fe4a57b8023c92ecd17927
4 schema:citation sg:pub.10.1038/nature13894
5 sg:pub.10.1038/ncomms14074
6 sg:pub.10.1038/ncomms5247
7 sg:pub.10.1038/nmat4153
8 sg:pub.10.1038/nnano.2014.323
9 sg:pub.10.1038/nnano.2015.143
10 sg:pub.10.1038/nnano.2015.314
11 sg:pub.10.1038/nphys3527
12 https://doi.org/10.1002/jcc.20495
13 https://doi.org/10.1016/j.apsusc.2008.01.056
14 https://doi.org/10.1016/j.susc.2018.03.015
15 https://doi.org/10.1021/acs.nanolett.5b00648
16 https://doi.org/10.1021/acs.nanolett.6b02101
17 https://doi.org/10.1039/c4cs00102h
18 https://doi.org/10.1063/1.323539
19 https://doi.org/10.1063/1.4740268
20 https://doi.org/10.1073/pnas.0502848102
21 https://doi.org/10.1088/0256-307x/29/3/037402
22 https://doi.org/10.1088/0953-8984/6/40/015
23 https://doi.org/10.1103/physrevb.50.17953
24 https://doi.org/10.1103/physrevb.59.1758
25 https://doi.org/10.1103/physrevb.78.161408
26 https://doi.org/10.1103/physrevb.79.195425
27 https://doi.org/10.1103/physrevb.8.3719
28 https://doi.org/10.1103/physrevb.89.041407
29 https://doi.org/10.1103/physrevb.91.041116
30 https://doi.org/10.1103/physrevb.94.081404
31 https://doi.org/10.1103/physrevb.95.235121
32 https://doi.org/10.1103/physrevlett.101.026803
33 https://doi.org/10.1103/physrevlett.77.3865
34 https://doi.org/10.1103/revmodphys.78.17
35 https://doi.org/10.1126/science.1228006
36 https://doi.org/10.1126/science.1230512
37 https://doi.org/10.1126/science.aac9439
38 https://doi.org/10.1143/jjap.33.2696
39 schema:datePublished 2019-12
40 schema:datePublishedReg 2019-12-01
41 schema:description Charge transfers resulting from weak bondings between two-dimensional materials and the supporting substrates are often tacitly associated with their work function differences. In this context, two-dimensional materials could be normally doped at relatively low levels. Here, we demonstrate how even weak hybridization with substrates can lead to an apparent heavy doping, using the example of monolayer 1H-TaS<sub>2</sub> grown on Au(111). Ab-initio calculations show that sizable changes in Fermi areas can arise, while the transferred charge between substrate and two-dimensional material is much smaller than the variation of Fermi areas suggests. This mechanism, which we refer to as pseudodoping, is associated with non-linear energy-dependent shifts of electronic spectra, which our scanning tunneling spectroscopy experiments reveal for clean and defective TaS<sub>2</sub> monolayer on Au(111). The influence of pseudodoping on the formation of many-body states in two-dimensional metallic materials is analyzed, shedding light on utilizing pseudodoping to control electronic phase diagrams.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N51b4c2ca4e5d455cb0d0a3dc135028c8
46 Nbe798dd5aca6484f929d89a236934090
47 sg:journal.1043282
48 schema:name Pseudodoping of a metallic two-dimensional material by the supporting substrate
49 schema:pagination 180
50 schema:productId N036fa951a8f141bcae0ba5cc17f800e9
51 N181fe44913534b7695359a7cf53e5ea2
52 N30f23e1f41fd462abb61a210a22e1eb3
53 N54ec6de9e59b41f9a300b8692185bea8
54 N5ea74e2700f94c97834f9c389f166f1a
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111273812
56 https://doi.org/10.1038/s41467-018-08088-8
57 schema:sdDatePublished 2019-04-11T08:41
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N14f66a044ccf42708ba9a49aa2fc000a
60 schema:url https://www.nature.com/articles/s41467-018-08088-8
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N036fa951a8f141bcae0ba5cc17f800e9 schema:name nlm_unique_id
65 schema:value 101528555
66 rdf:type schema:PropertyValue
67 N10b4338be8fe4a57b8023c92ecd17927 rdf:first sg:person.016617105721.30
68 rdf:rest Ndee090f4868d423ea7c92be0ba7b1463
69 N14f66a044ccf42708ba9a49aa2fc000a schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N181fe44913534b7695359a7cf53e5ea2 schema:name readcube_id
72 schema:value c519232de262efd55c8edb3188728f92f1333305fdf7df501a41336fda941315
73 rdf:type schema:PropertyValue
74 N30f23e1f41fd462abb61a210a22e1eb3 schema:name pubmed_id
75 schema:value 30643132
76 rdf:type schema:PropertyValue
77 N51b4c2ca4e5d455cb0d0a3dc135028c8 schema:issueNumber 1
78 rdf:type schema:PublicationIssue
79 N54bd52812efc42dfb37d06919228f994 rdf:first sg:person.01331027551.58
80 rdf:rest Nb99ff8fa49c5475a8b09a99066bafccd
81 N54ec6de9e59b41f9a300b8692185bea8 schema:name dimensions_id
82 schema:value pub.1111273812
83 rdf:type schema:PropertyValue
84 N5ea74e2700f94c97834f9c389f166f1a schema:name doi
85 schema:value 10.1038/s41467-018-08088-8
86 rdf:type schema:PropertyValue
87 N679d2d966e574556bbf11fba93112549 rdf:first sg:person.01321432222.36
88 rdf:rest N8deb286ad6c647ee88a5722d7e026112
89 N8deb286ad6c647ee88a5722d7e026112 rdf:first sg:person.0737703544.03
90 rdf:rest N54bd52812efc42dfb37d06919228f994
91 Nabdd89fa3cf745ca846989904bf1845f rdf:first sg:person.012765265520.33
92 rdf:rest Nfea8a6f7ace34e7180917a897a21950d
93 Nb99ff8fa49c5475a8b09a99066bafccd rdf:first sg:person.01234461525.39
94 rdf:rest rdf:nil
95 Nbe798dd5aca6484f929d89a236934090 schema:volumeNumber 10
96 rdf:type schema:PublicationVolume
97 Ndee090f4868d423ea7c92be0ba7b1463 rdf:first sg:person.01000727530.28
98 rdf:rest Nabdd89fa3cf745ca846989904bf1845f
99 Nfea8a6f7ace34e7180917a897a21950d rdf:first sg:person.011630606261.60
100 rdf:rest N679d2d966e574556bbf11fba93112549
101 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
102 schema:name Engineering
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
105 schema:name Materials Engineering
106 rdf:type schema:DefinedTerm
107 sg:grant.3711679 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-08088-8
108 rdf:type schema:MonetaryGrant
109 sg:grant.3764871 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-08088-8
110 rdf:type schema:MonetaryGrant
111 sg:grant.3797019 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-08088-8
112 rdf:type schema:MonetaryGrant
113 sg:grant.4322646 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-08088-8
114 rdf:type schema:MonetaryGrant
115 sg:journal.1043282 schema:issn 2041-1723
116 schema:name Nature Communications
117 rdf:type schema:Periodical
118 sg:person.01000727530.28 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
119 schema:familyName Eich
120 schema:givenName Andreas
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000727530.28
122 rdf:type schema:Person
123 sg:person.011630606261.60 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
124 schema:familyName Ngankeu
125 schema:givenName Arlette S.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011630606261.60
127 rdf:type schema:Person
128 sg:person.01234461525.39 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
129 schema:familyName Wehling
130 schema:givenName Tim O.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234461525.39
132 rdf:type schema:Person
133 sg:person.012765265520.33 schema:affiliation https://www.grid.ac/institutes/grid.76978.37
134 schema:familyName Sanders
135 schema:givenName Charlotte
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012765265520.33
137 rdf:type schema:Person
138 sg:person.01321432222.36 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
139 schema:familyName Bianchi
140 schema:givenName Marco
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321432222.36
142 rdf:type schema:Person
143 sg:person.01331027551.58 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
144 schema:familyName Khajetoorians
145 schema:givenName Alexander A.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331027551.58
147 rdf:type schema:Person
148 sg:person.016617105721.30 schema:affiliation https://www.grid.ac/institutes/grid.7704.4
149 schema:familyName Shao
150 schema:givenName Bin
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016617105721.30
152 rdf:type schema:Person
153 sg:person.0737703544.03 schema:affiliation https://www.grid.ac/institutes/grid.7048.b
154 schema:familyName Hofmann
155 schema:givenName Philip
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737703544.03
157 rdf:type schema:Person
158 sg:pub.10.1038/nature13894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052482923
159 https://doi.org/10.1038/nature13894
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms14074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027503338
162 https://doi.org/10.1038/ncomms14074
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ncomms5247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043523728
165 https://doi.org/10.1038/ncomms5247
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmat4153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006127136
168 https://doi.org/10.1038/nmat4153
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nnano.2014.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034296964
171 https://doi.org/10.1038/nnano.2014.323
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nnano.2015.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014123450
174 https://doi.org/10.1038/nnano.2015.143
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nnano.2015.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000771640
177 https://doi.org/10.1038/nnano.2015.314
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nphys3527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006940404
180 https://doi.org/10.1038/nphys3527
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/jcc.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044734228
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.apsusc.2008.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001357106
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.susc.2018.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101632539
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/acs.nanolett.5b00648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015129891
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/acs.nanolett.6b02101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013770850
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1039/c4cs00102h schema:sameAs https://app.dimensions.ai/details/publication/pub.1004283723
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.323539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057922316
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.4740268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007486446
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/0256-307x/29/3/037402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005911355
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0953-8984/6/40/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008499271
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevb.78.161408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626429
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physrevb.79.195425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012502167
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevb.8.3719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060629134
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevb.89.041407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060642773
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.91.041116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017468720
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.94.081404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651780
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.95.235121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086006401
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.101.026803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030541306
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/revmodphys.78.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839611
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.1228006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467063
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1126/science.1230512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043112732
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.aac9439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041698293
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1143/jjap.33.2696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063051813
235 rdf:type schema:CreativeWork
236 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
237 schema:name Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
238 rdf:type schema:Organization
239 https://www.grid.ac/institutes/grid.7048.b schema:alternateName Aarhus University
240 schema:name Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000, Aarhus C, Denmark
241 rdf:type schema:Organization
242 https://www.grid.ac/institutes/grid.76978.37 schema:alternateName Rutherford Appleton Laboratory
243 schema:name Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell, OX11 0QX, Didcot, UK
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.7704.4 schema:alternateName University of Bremen
246 schema:name Bremen Center for Computational Materials Science, Universität Bremen, Am Fallturm 1a, 28359, Bremen, Germany
247 Institut für Theoretische Physik, Universität Bremen, Otto-Hahn-Allee 1, 28359, Bremen, Germany
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...