Higher order effects in organic LEDs with sub-bandgap turn-on View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sebastian Engmann, Adam J. Barito, Emily G. Bittle, Noel C. Giebink, Lee J. Richter, David J. Gundlach

ABSTRACT

Spin-dependent nonlinear processes in organic materials such as singlet-fission and triplet-triplet annihilation could increase the performance for photovoltaics, detectors, and light emitting diodes. Rubrene/C60 light emitting diodes exhibit a distinct low voltage (half-bandgap) threshold for emission. Two origins for the low voltage turn-on have been proposed: (i) Auger assisted energy up-conversion, and (ii) triplet-triplet annihilation. We test these proposals by systematically altering the rubrene/C60 interface kinetics by introducing thin interlayers. Quantitative analysis of the unmodified rubrene/C60 device suggests that higher order processes can be ruled out as the origin of the sub-bandgap turn-on. Rather, band-to-band recombination is the most likely radiative recombination process. However, insertion of a bathocuproine layer yields a 3-fold increase in luminance compared to the unmodified device. This indicates that suppression of parasitic interface processes by judicious modification of the interface allows a triplet-triplet annihilation channel to be observed. More... »

PAGES

227

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-08075-z

DOI

http://dx.doi.org/10.1038/s41467-018-08075-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111348233

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30651556


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Theiss Research, 7411 Eads Avenue, 92037, La Jolla, CA, USA", 
            "Nanoscale Device Characterization Division, National Institute of Standards and Technology, 101 Bureau Drive, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Engmann", 
        "givenName": "Sebastian", 
        "id": "sg:person.013542316771.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542316771.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Nanoscale Device Characterization Division, National Institute of Standards and Technology, 101 Bureau Drive, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barito", 
        "givenName": "Adam J.", 
        "id": "sg:person.07453373603.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453373603.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Nanoscale Device Characterization Division, National Institute of Standards and Technology, 101 Bureau Drive, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bittle", 
        "givenName": "Emily G.", 
        "id": "sg:person.01155362703.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155362703.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Electrical Engineering, The Pennsylvania State University, Electrical Engineering West, 16801, State College, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giebink", 
        "givenName": "Noel C.", 
        "id": "sg:person.015453342073.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453342073.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Materials Science and Engineering Division, National Institute of Standards and Technology, 101 Bureau Drive, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richter", 
        "givenName": "Lee J.", 
        "id": "sg:person.01274131366.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274131366.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Nanoscale Device Characterization Division, National Institute of Standards and Technology, 101 Bureau Drive, 20899, Gaithersburg, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gundlach", 
        "givenName": "David J.", 
        "id": "sg:person.0677276543.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677276543.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/smll.201501355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000179202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/admi.201400189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003840663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ra02382c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009041824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201500002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010282880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp40449d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011930956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201100709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014268154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5cp07099f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022683382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200701052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022705217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep25331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025440983", 
          "https://doi.org/10.1038/srep25331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.solmat.2011.08.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025988377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200600278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026684193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2009.04.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028228780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(91)90138-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032274300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0248(91)90138-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032274300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nantod.2010.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033275331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1501470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036446627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042397195", 
          "https://doi.org/10.1038/nmat2548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042397195", 
          "https://doi.org/10.1038/nmat2548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp43876c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044394534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jpe.6.036001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044607054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045590243", 
          "https://doi.org/10.1038/srep07787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2752540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046899435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ejoc.201402680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047646361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.5b07548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055109719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.6b08356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055112915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp200234m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp200234m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056081586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp309286v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056091812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp404666w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056095609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp5095905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056103498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2132072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057838663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2354319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057851453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3651752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057992147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4734505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058054912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4789622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/15/18/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058959821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.3.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.3.054011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060517660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.155305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.155305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.155306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.155306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060634042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.193203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.193203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.201203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.201203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060641571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.066605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.066605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.097403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.097403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/68.300169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061208216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2010.2043061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061336093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.34.1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063053467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.34.008298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065110649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orgel.2017.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084100541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.6b16259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084124427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.7b19053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100238061"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Spin-dependent nonlinear processes in organic materials such as singlet-fission and triplet-triplet annihilation could increase the performance for photovoltaics, detectors, and light emitting diodes. Rubrene/C60 light emitting diodes exhibit a distinct low voltage (half-bandgap) threshold for emission. Two origins for the low voltage turn-on have been proposed: (i) Auger assisted energy up-conversion, and (ii) triplet-triplet annihilation. We test these proposals by systematically altering the rubrene/C60 interface kinetics by introducing thin interlayers. Quantitative analysis of the unmodified rubrene/C60 device suggests that higher order processes can be ruled out as the origin of the sub-bandgap turn-on. Rather, band-to-band recombination is the most likely radiative recombination process. However, insertion of a bathocuproine layer yields a 3-fold increase in luminance compared to the unmodified device. This indicates that suppression of parasitic interface processes by judicious modification of the interface allows a triplet-triplet annihilation channel to be observed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-08075-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Higher order effects in organic LEDs with sub-bandgap turn-on", 
    "pagination": "227", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b1573a713293f8cc471e2a8e0aaff1ab686bac5c3c188b6e997d841d23c4261"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30651556"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-08075-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111348233"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-08075-z", 
      "https://app.dimensions.ai/details/publication/pub.1111348233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000321_0000000321/records_74925_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-08075-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08075-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08075-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08075-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-08075-z'


 

This table displays all metadata directly associated to this object as RDF triples.

258 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-08075-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N64f7b0ae360b4ebab7797ef040ca0da9
4 schema:citation sg:pub.10.1038/nmat2548
5 sg:pub.10.1038/srep07787
6 sg:pub.10.1038/srep25331
7 https://doi.org/10.1002/adfm.200600278
8 https://doi.org/10.1002/adma.200701052
9 https://doi.org/10.1002/admi.201400189
10 https://doi.org/10.1002/aenm.201100709
11 https://doi.org/10.1002/chem.201500002
12 https://doi.org/10.1002/ejoc.201402680
13 https://doi.org/10.1002/smll.201501355
14 https://doi.org/10.1016/0022-0248(91)90138-u
15 https://doi.org/10.1016/j.cplett.2009.04.024
16 https://doi.org/10.1016/j.nantod.2010.08.010
17 https://doi.org/10.1016/j.orgel.2017.03.020
18 https://doi.org/10.1016/j.solmat.2011.08.022
19 https://doi.org/10.1021/acs.jpcc.5b07548
20 https://doi.org/10.1021/acs.jpcc.6b08356
21 https://doi.org/10.1021/acsami.6b16259
22 https://doi.org/10.1021/acsami.7b19053
23 https://doi.org/10.1021/jp200234m
24 https://doi.org/10.1021/jp309286v
25 https://doi.org/10.1021/jp404666w
26 https://doi.org/10.1021/jp5095905
27 https://doi.org/10.1039/c2cp40449d
28 https://doi.org/10.1039/c2cp43876c
29 https://doi.org/10.1039/c5cp07099f
30 https://doi.org/10.1039/c5ra02382c
31 https://doi.org/10.1063/1.125640
32 https://doi.org/10.1063/1.2132072
33 https://doi.org/10.1063/1.2354319
34 https://doi.org/10.1063/1.2752540
35 https://doi.org/10.1063/1.3651752
36 https://doi.org/10.1063/1.4734505
37 https://doi.org/10.1063/1.4789622
38 https://doi.org/10.1088/0022-3719/15/18/012
39 https://doi.org/10.1103/physrevapplied.3.054011
40 https://doi.org/10.1103/physrevb.82.155305
41 https://doi.org/10.1103/physrevb.82.155306
42 https://doi.org/10.1103/physrevb.84.193203
43 https://doi.org/10.1103/physrevb.87.201203
44 https://doi.org/10.1103/physrevb.87.224202
45 https://doi.org/10.1103/physrevlett.107.066605
46 https://doi.org/10.1103/physrevlett.109.097403
47 https://doi.org/10.1109/68.300169
48 https://doi.org/10.1109/jstqe.2010.2043061
49 https://doi.org/10.1117/1.jpe.6.036001
50 https://doi.org/10.1126/sciadv.1501470
51 https://doi.org/10.1143/jjap.34.1270
52 https://doi.org/10.1364/ao.34.008298
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description Spin-dependent nonlinear processes in organic materials such as singlet-fission and triplet-triplet annihilation could increase the performance for photovoltaics, detectors, and light emitting diodes. Rubrene/C<sub>60</sub> light emitting diodes exhibit a distinct low voltage (half-bandgap) threshold for emission. Two origins for the low voltage turn-on have been proposed: (i) Auger assisted energy up-conversion, and (ii) triplet-triplet annihilation. We test these proposals by systematically altering the rubrene/C<sub>60</sub> interface kinetics by introducing thin interlayers. Quantitative analysis of the unmodified rubrene/C<sub>60</sub> device suggests that higher order processes can be ruled out as the origin of the sub-bandgap turn-on. Rather, band-to-band recombination is the most likely radiative recombination process. However, insertion of a bathocuproine layer yields a 3-fold increase in luminance compared to the unmodified device. This indicates that suppression of parasitic interface processes by judicious modification of the interface allows a triplet-triplet annihilation channel to be observed.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf N162b96e9e415471da96be096e75228d4
60 N309451f27ca040f9bb8f0ce9bd364c8d
61 sg:journal.1043282
62 schema:name Higher order effects in organic LEDs with sub-bandgap turn-on
63 schema:pagination 227
64 schema:productId N0cd43086b7a445e7bb86b07abf6ed8f4
65 N816d4c1e3f4c4afbb900d41fb56a0ce9
66 N8fedeb9acf56466ca38de8bad31d38b4
67 N98d4fc1872e14136a5c3090020c36cfb
68 Ncd69fa030e5c42bb9c4de246ccb5008d
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111348233
70 https://doi.org/10.1038/s41467-018-08075-z
71 schema:sdDatePublished 2019-04-11T08:42
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nc3786b021868449eb9674993d1f7128d
74 schema:url https://www.nature.com/articles/s41467-018-08075-z
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N0cd43086b7a445e7bb86b07abf6ed8f4 schema:name doi
79 schema:value 10.1038/s41467-018-08075-z
80 rdf:type schema:PropertyValue
81 N162b96e9e415471da96be096e75228d4 schema:volumeNumber 10
82 rdf:type schema:PublicationVolume
83 N1da68c17fa09438b98d00c7b7c2de944 rdf:first sg:person.015453342073.27
84 rdf:rest N21f1802d6d1d4fbe8312a2a5b8f2a465
85 N21f1802d6d1d4fbe8312a2a5b8f2a465 rdf:first sg:person.01274131366.73
86 rdf:rest Nd0b9766c009247dfa21662f39d6c6f4e
87 N309451f27ca040f9bb8f0ce9bd364c8d schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N64f7b0ae360b4ebab7797ef040ca0da9 rdf:first sg:person.013542316771.32
90 rdf:rest Nc7a73789be654ccb87ebb8ca5044728c
91 N816d4c1e3f4c4afbb900d41fb56a0ce9 schema:name dimensions_id
92 schema:value pub.1111348233
93 rdf:type schema:PropertyValue
94 N8fedeb9acf56466ca38de8bad31d38b4 schema:name readcube_id
95 schema:value 0b1573a713293f8cc471e2a8e0aaff1ab686bac5c3c188b6e997d841d23c4261
96 rdf:type schema:PropertyValue
97 N98d4fc1872e14136a5c3090020c36cfb schema:name nlm_unique_id
98 schema:value 101528555
99 rdf:type schema:PropertyValue
100 Nc3786b021868449eb9674993d1f7128d schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc73738321bff4d49b7240b161e0789ec rdf:first sg:person.01155362703.51
103 rdf:rest N1da68c17fa09438b98d00c7b7c2de944
104 Nc7a73789be654ccb87ebb8ca5044728c rdf:first sg:person.07453373603.40
105 rdf:rest Nc73738321bff4d49b7240b161e0789ec
106 Ncd69fa030e5c42bb9c4de246ccb5008d schema:name pubmed_id
107 schema:value 30651556
108 rdf:type schema:PropertyValue
109 Nd0b9766c009247dfa21662f39d6c6f4e rdf:first sg:person.0677276543.88
110 rdf:rest rdf:nil
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
115 schema:name Materials Engineering
116 rdf:type schema:DefinedTerm
117 sg:journal.1043282 schema:issn 2041-1723
118 schema:name Nature Communications
119 rdf:type schema:Periodical
120 sg:person.01155362703.51 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
121 schema:familyName Bittle
122 schema:givenName Emily G.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155362703.51
124 rdf:type schema:Person
125 sg:person.01274131366.73 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
126 schema:familyName Richter
127 schema:givenName Lee J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274131366.73
129 rdf:type schema:Person
130 sg:person.013542316771.32 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
131 schema:familyName Engmann
132 schema:givenName Sebastian
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013542316771.32
134 rdf:type schema:Person
135 sg:person.015453342073.27 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
136 schema:familyName Giebink
137 schema:givenName Noel C.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015453342073.27
139 rdf:type schema:Person
140 sg:person.0677276543.88 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
141 schema:familyName Gundlach
142 schema:givenName David J.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677276543.88
144 rdf:type schema:Person
145 sg:person.07453373603.40 schema:affiliation https://www.grid.ac/institutes/grid.94225.38
146 schema:familyName Barito
147 schema:givenName Adam J.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453373603.40
149 rdf:type schema:Person
150 sg:pub.10.1038/nmat2548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042397195
151 https://doi.org/10.1038/nmat2548
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/srep07787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045590243
154 https://doi.org/10.1038/srep07787
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep25331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025440983
157 https://doi.org/10.1038/srep25331
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/adfm.200600278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026684193
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/adma.200701052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022705217
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/admi.201400189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003840663
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/aenm.201100709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014268154
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/chem.201500002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010282880
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/ejoc.201402680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047646361
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/smll.201501355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000179202
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/0022-0248(91)90138-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1032274300
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.cplett.2009.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028228780
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.nantod.2010.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033275331
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.orgel.2017.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084100541
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.solmat.2011.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025988377
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/acs.jpcc.5b07548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055109719
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.jpcc.6b08356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055112915
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/acsami.6b16259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084124427
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/acsami.7b19053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100238061
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/jp200234m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056081586
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/jp309286v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056091812
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/jp404666w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056095609
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/jp5095905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056103498
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1039/c2cp40449d schema:sameAs https://app.dimensions.ai/details/publication/pub.1011930956
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/c2cp43876c schema:sameAs https://app.dimensions.ai/details/publication/pub.1044394534
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1039/c5cp07099f schema:sameAs https://app.dimensions.ai/details/publication/pub.1022683382
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1039/c5ra02382c schema:sameAs https://app.dimensions.ai/details/publication/pub.1009041824
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1063/1.125640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689754
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.2132072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057838663
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1063/1.2354319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057851453
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.2752540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046899435
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1063/1.3651752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057992147
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1063/1.4734505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058054912
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1063/1.4789622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068608
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1088/0022-3719/15/18/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058959821
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevapplied.3.054011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060517660
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevb.82.155305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634041
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevb.82.155306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060634042
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevb.84.193203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637387
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevb.87.201203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641482
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevb.87.224202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060641571
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevlett.107.066605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758630
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevlett.109.097403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760256
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1109/68.300169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061208216
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/jstqe.2010.2043061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061336093
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1117/1.jpe.6.036001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044607054
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1126/sciadv.1501470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036446627
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1143/jjap.34.1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063053467
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1364/ao.34.008298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065110649
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
252 schema:name Department of Electrical Engineering, The Pennsylvania State University, Electrical Engineering West, 16801, State College, PA, USA
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
255 schema:name Materials Science and Engineering Division, National Institute of Standards and Technology, 101 Bureau Drive, 20899, Gaithersburg, MD, USA
256 Nanoscale Device Characterization Division, National Institute of Standards and Technology, 101 Bureau Drive, 20899, Gaithersburg, MD, USA
257 Theiss Research, 7411 Eads Avenue, 92037, La Jolla, CA, USA
258 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...