Structure of the type VI secretion system TssK–TssF–TssG baseplate subcomplex revealed by cryo-electron microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12-19

AUTHORS

Young-Jun Park, Kaitlyn D. Lacourse, Christian Cambillau, Frank DiMaio, Joseph D. Mougous, David Veesler

ABSTRACT

Type VI secretion systems (T6SSs) translocate effectors into target cells and are made of a contractile sheath and a tube docked onto a multi-protein transmembrane complex via a baseplate. Although some information is available about the mechanisms of tail contraction leading to effector delivery, the detailed architecture and function of the baseplate remain unknown. Here, we report the 3.7 Å resolution cryo-electron microscopy reconstruction of an enteroaggregative Escherichia coli baseplate subcomplex assembled from TssK, TssF and TssG. The structure reveals two TssK trimers interact with a locally pseudo-3-fold symmetrical complex comprising two copies of TssF and one copy of TssG. TssF and TssG are structurally related to each other and to components of the phage T4 baseplate and of the type IV secretion system, strengthening the evolutionary relationships among these macromolecular machines. These results, together with bacterial two-hybrid assays, provide a structural framework to understand the T6SS baseplate architecture. More... »

PAGES

5385

References to SciGraph publications

  • 2012-07-29. Prevention of overfitting in cryo-EM structure determination in NATURE METHODS
  • 2017-06-19. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps in NATURE METHODS
  • 2017-06-26. Type VI secretion TssK baseplate protein exhibits structural similarity with phage receptor-binding proteins and evolved to bind the membrane complex in NATURE MICROBIOLOGY
  • 2017-02-06. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination in NATURE METHODS
  • 2012-11-08. Protein structure prediction from sequence variation in NATURE BIOTECHNOLOGY
  • 2016-02-24. Priming and polymerization of a bacterial contractile tail structure in NATURE
  • 2017-02-27. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy in NATURE METHODS
  • 2015-02-23. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement in NATURE METHODS
  • 2017-07-13. The type VI secretion system sheath assembles at the end distal from the membrane anchor in NATURE COMMUNICATIONS
  • 2012-02-26. Type VI secretion requires a dynamic contractile phage tail-like structure in NATURE
  • 2002-01. Structure of the cell-puncturing device of bacteriophage T4 in NATURE
  • 2017-09-25. Cryo-EM structure of the extended type VI secretion system sheath–tube complex in NATURE MICROBIOLOGY
  • 2016-05-18. Structure of the T4 baseplate and its function in triggering sheath contraction in NATURE
  • 2015-07-22. Biogenesis and structure of a type VI secretion membrane core complex in NATURE
  • 2015-03-30. Atomic structures of a bactericidal contractile nanotube in its pre- and postcontraction states in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2013-08-07. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-018-07796-5

    DOI

    http://dx.doi.org/10.1038/s41467-018-07796-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110584070

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30568167


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cryoelectron Microscopy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Structure, Quaternary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Type VI Secretion Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Park", 
            "givenName": "Young-Jun", 
            "id": "sg:person.015020273740.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015020273740.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Microbiology, University of Washington, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Microbiology, University of Washington, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lacourse", 
            "givenName": "Kaitlyn D.", 
            "id": "sg:person.011132153260.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011132153260.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, CNRS, Campus de Luminy, Case 932, 13288, Marseille, Cedex 09, France", 
              "id": "http://www.grid.ac/institutes/grid.463764.4", 
              "name": [
                "Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, CNRS, Campus de Luminy, Case 932, 13288, Marseille, Cedex 09, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cambillau", 
            "givenName": "Christian", 
            "id": "sg:person.01314152236.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314152236.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "DiMaio", 
            "givenName": "Frank", 
            "id": "sg:person.0660477641.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660477641.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute, University of Washington, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Microbiology, University of Washington, 98195, Seattle, WA, USA", 
                "Howard Hughes Medical Institute, University of Washington, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mougous", 
            "givenName": "Joseph D.", 
            "id": "sg:person.01125303721.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125303721.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Veesler", 
            "givenName": "David", 
            "id": "sg:person.01002414777.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002414777.95"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmicrobiol.2017.103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086189894", 
              "https://doi.org/10.1038/nmicrobiol.2017.103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083686092", 
              "https://doi.org/10.1038/nmeth.4169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14667", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010547308", 
              "https://doi.org/10.1038/nature14667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41564-017-0020-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091910477", 
              "https://doi.org/10.1038/s41564-017-0020-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015413547", 
              "https://doi.org/10.1038/nature10846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041024070", 
              "https://doi.org/10.1038/nmeth.2115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033335278", 
              "https://doi.org/10.1038/nsmb.2995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/415553a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002785834", 
              "https://doi.org/10.1038/415553a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026577191", 
              "https://doi.org/10.1038/nbt.2419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms16088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090651781", 
              "https://doi.org/10.1038/ncomms16088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086071524", 
              "https://doi.org/10.1038/nmeth.4340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015110469", 
              "https://doi.org/10.1038/nmeth.3286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050066013", 
              "https://doi.org/10.1038/nature12453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002221590", 
              "https://doi.org/10.1038/nature17971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129286", 
              "https://doi.org/10.1038/nmeth.4193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17182", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006559637", 
              "https://doi.org/10.1038/nature17182"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12-19", 
        "datePublishedReg": "2018-12-19", 
        "description": "Type VI secretion systems (T6SSs) translocate effectors into target cells and are made of a contractile sheath and a tube docked onto a multi-protein transmembrane complex via a baseplate. Although some information is available about the mechanisms of tail contraction leading to effector delivery, the detailed architecture and function of the baseplate remain unknown. Here, we report the 3.7\u2009\u00c5 resolution cryo-electron microscopy reconstruction of an enteroaggregative Escherichia coli baseplate subcomplex assembled from TssK, TssF and TssG. The structure reveals two TssK trimers interact with a locally pseudo-3-fold symmetrical complex comprising two copies of TssF and one copy of TssG. TssF and TssG are structurally related to each other and to components of the phage T4 baseplate and of the type IV secretion system, strengthening the evolutionary relationships among these macromolecular machines. These results, together with bacterial two-hybrid assays, provide a structural framework to understand the T6SS baseplate architecture.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-018-07796-5", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7027576", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2458460", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7169995", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2683719", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "secretion system", 
          "\u00c5 resolution cryo-electron microscopy reconstruction", 
          "type VI secretion system", 
          "cryo-electron microscopy reconstruction", 
          "type IV secretion system", 
          "two-hybrid assay", 
          "cryo-electron microscopy", 
          "macromolecular machines", 
          "evolutionary relationships", 
          "effector delivery", 
          "transmembrane complex", 
          "T4 baseplate", 
          "contractile sheath", 
          "tail contraction", 
          "subcomplex", 
          "TssF", 
          "target cells", 
          "copies", 
          "structural framework", 
          "TssK", 
          "detailed architecture", 
          "effectors", 
          "baseplate", 
          "cells", 
          "assays", 
          "complexes", 
          "trimer", 
          "mechanism", 
          "structure", 
          "function", 
          "sheath", 
          "microscopy", 
          "TSSG", 
          "components", 
          "architecture", 
          "system", 
          "relationship", 
          "information", 
          "results", 
          "contraction", 
          "reconstruction", 
          "tube", 
          "delivery", 
          "framework", 
          "machine"
        ], 
        "name": "Structure of the type VI secretion system TssK\u2013TssF\u2013TssG baseplate subcomplex revealed by cryo-electron microscopy", 
        "pagination": "5385", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110584070"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-018-07796-5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30568167"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-018-07796-5", 
          "https://app.dimensions.ai/details/publication/pub.1110584070"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_783.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-018-07796-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07796-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07796-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07796-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07796-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    244 TRIPLES      22 PREDICATES      93 URIs      69 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-018-07796-5 schema:about N0745acd4c2f04d69991961fd854cdadb
    2 N34ba420e35b3485ba505ea029faefca4
    3 N5f67e6beab1a4c819a5a39bbce823d89
    4 N6bb617ec0f81413ca0a801828803fd0a
    5 Nd8929a044e094a1ea160ccedfe32017f
    6 Nfa6ca0764e0e45c8b6da2c03ae9a5ba1
    7 anzsrc-for:06
    8 anzsrc-for:0601
    9 schema:author Nacd36e945c4b4bd08fc5985b4511e389
    10 schema:citation sg:pub.10.1038/415553a
    11 sg:pub.10.1038/nature10846
    12 sg:pub.10.1038/nature12453
    13 sg:pub.10.1038/nature14667
    14 sg:pub.10.1038/nature17182
    15 sg:pub.10.1038/nature17971
    16 sg:pub.10.1038/nbt.2419
    17 sg:pub.10.1038/ncomms16088
    18 sg:pub.10.1038/nmeth.2115
    19 sg:pub.10.1038/nmeth.3286
    20 sg:pub.10.1038/nmeth.4169
    21 sg:pub.10.1038/nmeth.4193
    22 sg:pub.10.1038/nmeth.4340
    23 sg:pub.10.1038/nmicrobiol.2017.103
    24 sg:pub.10.1038/nsmb.2995
    25 sg:pub.10.1038/s41564-017-0020-7
    26 schema:datePublished 2018-12-19
    27 schema:datePublishedReg 2018-12-19
    28 schema:description Type VI secretion systems (T6SSs) translocate effectors into target cells and are made of a contractile sheath and a tube docked onto a multi-protein transmembrane complex via a baseplate. Although some information is available about the mechanisms of tail contraction leading to effector delivery, the detailed architecture and function of the baseplate remain unknown. Here, we report the 3.7 Å resolution cryo-electron microscopy reconstruction of an enteroaggregative Escherichia coli baseplate subcomplex assembled from TssK, TssF and TssG. The structure reveals two TssK trimers interact with a locally pseudo-3-fold symmetrical complex comprising two copies of TssF and one copy of TssG. TssF and TssG are structurally related to each other and to components of the phage T4 baseplate and of the type IV secretion system, strengthening the evolutionary relationships among these macromolecular machines. These results, together with bacterial two-hybrid assays, provide a structural framework to understand the T6SS baseplate architecture.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N6865f41ab81846e8b8159220a1240824
    33 Nf5c02f75096247afb097a9de9a6edaef
    34 sg:journal.1043282
    35 schema:keywords T4 baseplate
    36 TSSG
    37 TssF
    38 TssK
    39 architecture
    40 assays
    41 baseplate
    42 cells
    43 complexes
    44 components
    45 contractile sheath
    46 contraction
    47 copies
    48 cryo-electron microscopy
    49 cryo-electron microscopy reconstruction
    50 delivery
    51 detailed architecture
    52 effector delivery
    53 effectors
    54 evolutionary relationships
    55 framework
    56 function
    57 information
    58 machine
    59 macromolecular machines
    60 mechanism
    61 microscopy
    62 reconstruction
    63 relationship
    64 results
    65 secretion system
    66 sheath
    67 structural framework
    68 structure
    69 subcomplex
    70 system
    71 tail contraction
    72 target cells
    73 transmembrane complex
    74 trimer
    75 tube
    76 two-hybrid assay
    77 type IV secretion system
    78 type VI secretion system
    79 Å resolution cryo-electron microscopy reconstruction
    80 schema:name Structure of the type VI secretion system TssK–TssF–TssG baseplate subcomplex revealed by cryo-electron microscopy
    81 schema:pagination 5385
    82 schema:productId N0ea15af86ce14ef8b92560ffcae23bb4
    83 N661d5e317ecf4593a65fd89821332370
    84 Na065e5417cf841bdabd7404a357a246a
    85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110584070
    86 https://doi.org/10.1038/s41467-018-07796-5
    87 schema:sdDatePublished 2022-06-01T22:18
    88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    89 schema:sdPublisher Nc7fec9f386ce4560ba2f841ef2f9d579
    90 schema:url https://doi.org/10.1038/s41467-018-07796-5
    91 sgo:license sg:explorer/license/
    92 sgo:sdDataset articles
    93 rdf:type schema:ScholarlyArticle
    94 N0745acd4c2f04d69991961fd854cdadb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Escherichia coli Proteins
    96 rdf:type schema:DefinedTerm
    97 N0ea15af86ce14ef8b92560ffcae23bb4 schema:name doi
    98 schema:value 10.1038/s41467-018-07796-5
    99 rdf:type schema:PropertyValue
    100 N12b4b47268614baa8db19605b920a435 rdf:first sg:person.01002414777.95
    101 rdf:rest rdf:nil
    102 N34ba420e35b3485ba505ea029faefca4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Escherichia coli
    104 rdf:type schema:DefinedTerm
    105 N5f67e6beab1a4c819a5a39bbce823d89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Cryoelectron Microscopy
    107 rdf:type schema:DefinedTerm
    108 N661d5e317ecf4593a65fd89821332370 schema:name dimensions_id
    109 schema:value pub.1110584070
    110 rdf:type schema:PropertyValue
    111 N6865f41ab81846e8b8159220a1240824 schema:volumeNumber 9
    112 rdf:type schema:PublicationVolume
    113 N6bb617ec0f81413ca0a801828803fd0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Type VI Secretion Systems
    115 rdf:type schema:DefinedTerm
    116 N7e45c635adf845958f4ff093db04fc64 rdf:first sg:person.01314152236.73
    117 rdf:rest Nf8b819cad9f64581b751916cf8f3c2f1
    118 Na065e5417cf841bdabd7404a357a246a schema:name pubmed_id
    119 schema:value 30568167
    120 rdf:type schema:PropertyValue
    121 Nacd36e945c4b4bd08fc5985b4511e389 rdf:first sg:person.015020273740.07
    122 rdf:rest Ne7909e027950490bbd04280495bf5d09
    123 Nc7fec9f386ce4560ba2f841ef2f9d579 schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 Nd8929a044e094a1ea160ccedfe32017f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Protein Structure, Quaternary
    127 rdf:type schema:DefinedTerm
    128 Ne7909e027950490bbd04280495bf5d09 rdf:first sg:person.011132153260.47
    129 rdf:rest N7e45c635adf845958f4ff093db04fc64
    130 Nea70e9ca0d104535bca06fa4b60df238 rdf:first sg:person.01125303721.76
    131 rdf:rest N12b4b47268614baa8db19605b920a435
    132 Nf5c02f75096247afb097a9de9a6edaef schema:issueNumber 1
    133 rdf:type schema:PublicationIssue
    134 Nf8b819cad9f64581b751916cf8f3c2f1 rdf:first sg:person.0660477641.01
    135 rdf:rest Nea70e9ca0d104535bca06fa4b60df238
    136 Nfa6ca0764e0e45c8b6da2c03ae9a5ba1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Amino Acid Sequence
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Biological Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Biochemistry and Cell Biology
    144 rdf:type schema:DefinedTerm
    145 sg:grant.2458460 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-07796-5
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.2683719 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-07796-5
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.7027576 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-07796-5
    150 rdf:type schema:MonetaryGrant
    151 sg:grant.7169995 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-07796-5
    152 rdf:type schema:MonetaryGrant
    153 sg:journal.1043282 schema:issn 2041-1723
    154 schema:name Nature Communications
    155 schema:publisher Springer Nature
    156 rdf:type schema:Periodical
    157 sg:person.01002414777.95 schema:affiliation grid-institutes:grid.34477.33
    158 schema:familyName Veesler
    159 schema:givenName David
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002414777.95
    161 rdf:type schema:Person
    162 sg:person.011132153260.47 schema:affiliation grid-institutes:grid.34477.33
    163 schema:familyName Lacourse
    164 schema:givenName Kaitlyn D.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011132153260.47
    166 rdf:type schema:Person
    167 sg:person.01125303721.76 schema:affiliation grid-institutes:grid.34477.33
    168 schema:familyName Mougous
    169 schema:givenName Joseph D.
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125303721.76
    171 rdf:type schema:Person
    172 sg:person.01314152236.73 schema:affiliation grid-institutes:grid.463764.4
    173 schema:familyName Cambillau
    174 schema:givenName Christian
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314152236.73
    176 rdf:type schema:Person
    177 sg:person.015020273740.07 schema:affiliation grid-institutes:grid.34477.33
    178 schema:familyName Park
    179 schema:givenName Young-Jun
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015020273740.07
    181 rdf:type schema:Person
    182 sg:person.0660477641.01 schema:affiliation grid-institutes:grid.34477.33
    183 schema:familyName DiMaio
    184 schema:givenName Frank
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660477641.01
    186 rdf:type schema:Person
    187 sg:pub.10.1038/415553a schema:sameAs https://app.dimensions.ai/details/publication/pub.1002785834
    188 https://doi.org/10.1038/415553a
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature10846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015413547
    191 https://doi.org/10.1038/nature10846
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature12453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050066013
    194 https://doi.org/10.1038/nature12453
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature14667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010547308
    197 https://doi.org/10.1038/nature14667
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature17182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006559637
    200 https://doi.org/10.1038/nature17182
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature17971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002221590
    203 https://doi.org/10.1038/nature17971
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nbt.2419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026577191
    206 https://doi.org/10.1038/nbt.2419
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ncomms16088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090651781
    209 https://doi.org/10.1038/ncomms16088
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nmeth.2115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041024070
    212 https://doi.org/10.1038/nmeth.2115
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nmeth.3286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015110469
    215 https://doi.org/10.1038/nmeth.3286
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nmeth.4169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083686092
    218 https://doi.org/10.1038/nmeth.4169
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nmeth.4193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129286
    221 https://doi.org/10.1038/nmeth.4193
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nmeth.4340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086071524
    224 https://doi.org/10.1038/nmeth.4340
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nmicrobiol.2017.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086189894
    227 https://doi.org/10.1038/nmicrobiol.2017.103
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nsmb.2995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033335278
    230 https://doi.org/10.1038/nsmb.2995
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/s41564-017-0020-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091910477
    233 https://doi.org/10.1038/s41564-017-0020-7
    234 rdf:type schema:CreativeWork
    235 grid-institutes:grid.34477.33 schema:alternateName Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA
    236 Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
    237 Howard Hughes Medical Institute, University of Washington, 98195, Seattle, WA, USA
    238 schema:name Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA
    239 Department of Microbiology, University of Washington, 98195, Seattle, WA, USA
    240 Howard Hughes Medical Institute, University of Washington, 98195, Seattle, WA, USA
    241 rdf:type schema:Organization
    242 grid-institutes:grid.463764.4 schema:alternateName Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, CNRS, Campus de Luminy, Case 932, 13288, Marseille, Cedex 09, France
    243 schema:name Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Universite, CNRS, Campus de Luminy, Case 932, 13288, Marseille, Cedex 09, France
    244 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...