Influence of fake news in Twitter during the 2016 US presidential election View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-02

AUTHORS

Alexandre Bovet, Hernán A. Makse

ABSTRACT

The dynamics and influence of fake news on Twitter during the 2016 US presidential election remains to be clarified. Here, we use a dataset of 171 million tweets in the five months preceding the election day to identify 30 million tweets, from 2.2 million users, which contain a link to news outlets. Based on a classification of news outlets curated by www.opensources.co , we find that 25% of these tweets spread either fake or extremely biased news. We characterize the networks of information flow to find the most influential spreaders of fake and traditional news and use causal modeling to uncover how fake news influenced the presidential election. We find that, while top influencers spreading traditional center and left leaning news largely influence the activity of Clinton supporters, this causality is reversed for the fake news: the activity of Trump supporters influences the dynamics of the top fake news spreaders. More... »

PAGES

7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-07761-2

DOI

http://dx.doi.org/10.1038/s41467-018-07761-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110929184

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30602729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/19", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Creative Arts and Writing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Journalism and Professional Writing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xys and Department of Mathematics, Universit\u00e9 de Namur, Rempart de la Vierge 8, 5000 Namur, Belgium", 
          "id": "http://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA", 
            "ICTEAM, Universit\u00e9 Catholique de Louvain, Avenue George Lema\u00eetre 4, 1348 Louvain-la-Neuve, Belgium", 
            "Xys and Department of Mathematics, Universit\u00e9 de Namur, Rempart de la Vierge 8, 5000 Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bovet", 
        "givenName": "Alexandre", 
        "id": "sg:person.015501704167.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501704167.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA", 
          "id": "http://www.grid.ac/institutes/grid.254250.4", 
          "name": [
            "Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makse", 
        "givenName": "Hern\u00e1n A.", 
        "id": "sg:person.01050020710.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050020710.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10985-009-9143-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040019738", 
          "https://doi.org/10.1007/s10985-009-9143-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep30062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012171946", 
          "https://doi.org/10.1038/srep30062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2015-50319-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045148828", 
          "https://doi.org/10.1140/epjst/e2015-50319-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2748-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004816646", 
          "https://doi.org/10.1007/978-1-4612-2748-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-06930-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109841452", 
          "https://doi.org/10.1038/s41467-018-06930-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030304197", 
          "https://doi.org/10.1038/nature14604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086230549", 
          "https://doi.org/10.1038/s41562-017-0132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051171362", 
          "https://doi.org/10.1007/bf02289026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008765199", 
          "https://doi.org/10.1038/nphys2160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep40391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010233779", 
          "https://doi.org/10.1038/srep40391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032657331", 
          "https://doi.org/10.1038/ncomms9502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep36043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017446862", 
          "https://doi.org/10.1038/srep36043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-26951-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104336762", 
          "https://doi.org/10.1038/s41598-018-26951-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-02", 
    "datePublishedReg": "2019-01-02", 
    "description": "The dynamics and influence of fake news on Twitter during the 2016 US presidential election remains to be clarified. Here, we use a dataset of 171 million tweets in the five months preceding the election day to identify 30 million tweets, from 2.2 million users, which contain a link to news outlets. Based on a classification of news outlets curated by www.opensources.co , we find that 25% of these tweets spread either fake or extremely biased news. We characterize the networks of information flow to find the most influential spreaders of fake and traditional news and use causal modeling to uncover how fake news influenced the presidential election. We find that, while top influencers spreading traditional center and left leaning news largely influence the activity of Clinton supporters, this causality is reversed for the fake news: the activity of Trump supporters influences the dynamics of the top fake news spreaders.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-07761-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5239723", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "causal modeling", 
      "months", 
      "activity", 
      "days", 
      "center", 
      "www", 
      "classification", 
      "influence", 
      "causality", 
      "news", 
      "link", 
      "traditional center", 
      "information flow", 
      "top influencers", 
      "flow", 
      "fake news spreaders", 
      "influencers", 
      "outlet", 
      "traditional news", 
      "supporters", 
      "spreader", 
      "users", 
      "dataset", 
      "news outlets", 
      "dynamics", 
      "network", 
      "modeling", 
      "US presidential election", 
      "presidential election", 
      "fake news", 
      "tweets", 
      "news spreaders", 
      "Twitter", 
      "election day", 
      "Clinton supporters", 
      "Trump supporters", 
      "elections", 
      "biased news", 
      "influential spreaders", 
      "top fake news spreaders"
    ], 
    "name": "Influence of fake news in Twitter during the 2016 US presidential election", 
    "pagination": "7", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110929184"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-07761-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30602729"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-07761-2", 
      "https://app.dimensions.ai/details/publication/pub.1110929184"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_798.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-07761-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07761-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07761-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07761-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07761-2'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      79 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-07761-2 schema:about anzsrc-for:19
2 anzsrc-for:1903
3 schema:author Nae4fc4e642104ba59db02ca4f526e2c7
4 schema:citation sg:pub.10.1007/978-1-4612-2748-9
5 sg:pub.10.1007/bf02289026
6 sg:pub.10.1007/s10985-009-9143-3
7 sg:pub.10.1038/nature14604
8 sg:pub.10.1038/ncomms9502
9 sg:pub.10.1038/nphys2160
10 sg:pub.10.1038/s41467-018-06930-7
11 sg:pub.10.1038/s41562-017-0132
12 sg:pub.10.1038/s41598-018-26951-y
13 sg:pub.10.1038/srep30062
14 sg:pub.10.1038/srep36043
15 sg:pub.10.1038/srep40391
16 sg:pub.10.1140/epjst/e2015-50319-0
17 schema:datePublished 2019-01-02
18 schema:datePublishedReg 2019-01-02
19 schema:description The dynamics and influence of fake news on Twitter during the 2016 US presidential election remains to be clarified. Here, we use a dataset of 171 million tweets in the five months preceding the election day to identify 30 million tweets, from 2.2 million users, which contain a link to news outlets. Based on a classification of news outlets curated by www.opensources.co , we find that 25% of these tweets spread either fake or extremely biased news. We characterize the networks of information flow to find the most influential spreaders of fake and traditional news and use causal modeling to uncover how fake news influenced the presidential election. We find that, while top influencers spreading traditional center and left leaning news largely influence the activity of Clinton supporters, this causality is reversed for the fake news: the activity of Trump supporters influences the dynamics of the top fake news spreaders.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N1bed69e1ed50443c87a7f1d33faa19bc
24 N4c5653565e4c4951ab121cad3ae4ddaf
25 sg:journal.1043282
26 schema:keywords Clinton supporters
27 Trump supporters
28 Twitter
29 US presidential election
30 activity
31 biased news
32 causal modeling
33 causality
34 center
35 classification
36 dataset
37 days
38 dynamics
39 election day
40 elections
41 fake news
42 fake news spreaders
43 flow
44 influence
45 influencers
46 influential spreaders
47 information flow
48 link
49 modeling
50 months
51 network
52 news
53 news outlets
54 news spreaders
55 outlet
56 presidential election
57 spreader
58 supporters
59 top fake news spreaders
60 top influencers
61 traditional center
62 traditional news
63 tweets
64 users
65 www
66 schema:name Influence of fake news in Twitter during the 2016 US presidential election
67 schema:pagination 7
68 schema:productId N22039583eb55491b8c122fe7f4b4d738
69 N5f3f273e7ae64921ae252e09dc64b69e
70 Nd4729b9468a54a29b73e77e76348e60a
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110929184
72 https://doi.org/10.1038/s41467-018-07761-2
73 schema:sdDatePublished 2021-12-01T19:43
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N0c18b126fd3e40e8b16ec57f208a91d4
76 schema:url https://doi.org/10.1038/s41467-018-07761-2
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N0c18b126fd3e40e8b16ec57f208a91d4 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N1bed69e1ed50443c87a7f1d33faa19bc schema:volumeNumber 10
83 rdf:type schema:PublicationVolume
84 N22039583eb55491b8c122fe7f4b4d738 schema:name dimensions_id
85 schema:value pub.1110929184
86 rdf:type schema:PropertyValue
87 N4c5653565e4c4951ab121cad3ae4ddaf schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N5f3f273e7ae64921ae252e09dc64b69e schema:name doi
90 schema:value 10.1038/s41467-018-07761-2
91 rdf:type schema:PropertyValue
92 N97a35e0fe2c74654b1188098a2eab870 rdf:first sg:person.01050020710.05
93 rdf:rest rdf:nil
94 Nae4fc4e642104ba59db02ca4f526e2c7 rdf:first sg:person.015501704167.22
95 rdf:rest N97a35e0fe2c74654b1188098a2eab870
96 Nd4729b9468a54a29b73e77e76348e60a schema:name pubmed_id
97 schema:value 30602729
98 rdf:type schema:PropertyValue
99 anzsrc-for:19 schema:inDefinedTermSet anzsrc-for:
100 schema:name Studies in Creative Arts and Writing
101 rdf:type schema:DefinedTerm
102 anzsrc-for:1903 schema:inDefinedTermSet anzsrc-for:
103 schema:name Journalism and Professional Writing
104 rdf:type schema:DefinedTerm
105 sg:grant.5239723 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-07761-2
106 rdf:type schema:MonetaryGrant
107 sg:journal.1043282 schema:issn 2041-1723
108 schema:name Nature Communications
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.01050020710.05 schema:affiliation grid-institutes:grid.254250.4
112 schema:familyName Makse
113 schema:givenName Hernán A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050020710.05
115 rdf:type schema:Person
116 sg:person.015501704167.22 schema:affiliation grid-institutes:grid.6520.1
117 schema:familyName Bovet
118 schema:givenName Alexandre
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501704167.22
120 rdf:type schema:Person
121 sg:pub.10.1007/978-1-4612-2748-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004816646
122 https://doi.org/10.1007/978-1-4612-2748-9
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02289026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051171362
125 https://doi.org/10.1007/bf02289026
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s10985-009-9143-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040019738
128 https://doi.org/10.1007/s10985-009-9143-3
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nature14604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030304197
131 https://doi.org/10.1038/nature14604
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/ncomms9502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032657331
134 https://doi.org/10.1038/ncomms9502
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nphys2160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008765199
137 https://doi.org/10.1038/nphys2160
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/s41467-018-06930-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109841452
140 https://doi.org/10.1038/s41467-018-06930-7
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/s41562-017-0132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086230549
143 https://doi.org/10.1038/s41562-017-0132
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/s41598-018-26951-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1104336762
146 https://doi.org/10.1038/s41598-018-26951-y
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/srep30062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012171946
149 https://doi.org/10.1038/srep30062
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep36043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017446862
152 https://doi.org/10.1038/srep36043
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/srep40391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010233779
155 https://doi.org/10.1038/srep40391
156 rdf:type schema:CreativeWork
157 sg:pub.10.1140/epjst/e2015-50319-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045148828
158 https://doi.org/10.1140/epjst/e2015-50319-0
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.254250.4 schema:alternateName Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
161 schema:name Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
162 rdf:type schema:Organization
163 grid-institutes:grid.6520.1 schema:alternateName Xys and Department of Mathematics, Université de Namur, Rempart de la Vierge 8, 5000 Namur, Belgium
164 schema:name ICTEAM, Université Catholique de Louvain, Avenue George Lemaître 4, 1348 Louvain-la-Neuve, Belgium
165 Levich Institute and Physics Department, City College of New York, New York, NY 10031 USA
166 Xys and Department of Mathematics, Université de Namur, Rempart de la Vierge 8, 5000 Namur, Belgium
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...