Thermodynamic phases in two-dimensional active matter View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Juliane U. Klamser, Sebastian C. Kapfer, Werner Krauth

ABSTRACT

Active matter has been much studied for its intriguing properties such as collective motion, motility-induced phase separation and giant fluctuations. However, it has remained unclear how the states of active materials connect with the equilibrium phases. For two-dimensional systems, this is also because the understanding of the liquid, hexatic, and solid equilibrium phases and their phase transitions is recent. Here we show that two-dimensional self-propelled point particles with inverse-power-law repulsions moving with a kinetic Monte Carlo algorithm without alignment interactions preserve all equilibrium phases up to very large activities. Furthermore, at high activity within the liquid phase, a critical point opens up a gas-liquid motility-induced phase separation region. In our model, two-step melting and motility-induced phase separation are thus independent phenomena. We discuss the reasons for these findings to be common to a wide class of two-dimensional active systems. More... »

PAGES

5045

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-07491-5

DOI

http://dx.doi.org/10.1038/s41467-018-07491-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110134145

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30487582


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Laboratoire de Physique Statistique, D\u00e9partement de physique de l\u2019ENS, Ecole Normale Sup\u00e9rieure, PSL Research University, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, Sorbonne Universit\u00e9s, UPMC Univ. Paris 06, CNRS, 75005, Paris, France", 
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Str. 38, 01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klamser", 
        "givenName": "Juliane U.", 
        "id": "sg:person.012733406737.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733406737.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Erlangen-Nuremberg", 
          "id": "https://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Str. 38, 01187, Dresden, Germany", 
            "Theoretische Physik 1, FAU Erlangen-N\u00fcrnberg, Staudtstr. 7, 91058, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kapfer", 
        "givenName": "Sebastian C.", 
        "id": "sg:person.01230412044.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412044.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Laboratoire de Physique Statistique, D\u00e9partement de physique de l\u2019ENS, Ecole Normale Sup\u00e9rieure, PSL Research University, Universit\u00e9 Paris Diderot, Sorbonne Paris Cit\u00e9, Sorbonne Universit\u00e9s, UPMC Univ. Paris 06, CNRS, 75005, Paris, France", 
            "Max-Planck-Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzer Str. 38, 01187, Dresden, Germany", 
            "Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krauth", 
        "givenName": "Werner", 
        "id": "sg:person.0605421611.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605421611.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.235702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001888347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.235702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001888347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003549718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003549718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-031214-014710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006590936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/4/042601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007146822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976.2016.1155777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008635675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.035702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014564028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.035702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014564028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016313268", 
          "https://doi.org/10.1038/ncomms5351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.218304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.218304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018690867", 
          "https://doi.org/10.1038/nphys3377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021954172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021954172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.168301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023529226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.168301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023529226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.238301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024825166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.238301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024825166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.198301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030250583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.198301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030250583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032213433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.062301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032213433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4774084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032249681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.055702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032781907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.055702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032781907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200900755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033550991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.218103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033675301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.218103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033675301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.055701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035071292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.055701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035071292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.238001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040408121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.238001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040408121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.028103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041838583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.028103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041838583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.168301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045382693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.168301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045382693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.155704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045567797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.155704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045567797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050360762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.066106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050360762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1695931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057767148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.176.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.1855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060524941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.1855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060524941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.2457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.2457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.061104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.061104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060739054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.038103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.038103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060765946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.17.1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060769116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.41.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.41.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.158001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084786720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.118.158001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084786720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.268002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100299799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.268002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100299799"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Active matter has been much studied for its intriguing properties such as collective motion, motility-induced phase separation and giant fluctuations. However, it has remained unclear how the states of active materials connect with the equilibrium phases. For two-dimensional systems, this is also because the understanding of the liquid, hexatic, and solid equilibrium phases and their phase transitions is recent. Here we show that two-dimensional self-propelled point particles with inverse-power-law repulsions moving with a kinetic Monte Carlo algorithm without alignment interactions preserve all equilibrium phases up to very large activities. Furthermore, at high activity within the liquid phase, a critical point opens up a gas-liquid motility-induced phase separation region. In our model, two-step melting and motility-induced phase separation are thus independent phenomena. We discuss the reasons for these findings to be common to a wide class of two-dimensional active systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-07491-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Thermodynamic phases in two-dimensional active matter", 
    "pagination": "5045", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c335997872e40a5d7ac5c21dd4e60a329c32fcddd1a2542d1ec4c9c729392417"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30487582"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-07491-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110134145"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-07491-5", 
      "https://app.dimensions.ai/details/publication/pub.1110134145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79624_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-07491-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07491-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07491-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07491-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-07491-5'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-07491-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nee485b3d76c547658da91fbda082e30f
4 schema:citation sg:pub.10.1038/ncomms5351
5 sg:pub.10.1038/nphys3377
6 https://doi.org/10.1002/cphc.200900755
7 https://doi.org/10.1063/1.1695931
8 https://doi.org/10.1063/1.4774084
9 https://doi.org/10.1080/00268976.2016.1155777
10 https://doi.org/10.1088/0034-4885/75/4/042601
11 https://doi.org/10.1103/physrev.176.250
12 https://doi.org/10.1103/physrevb.19.1855
13 https://doi.org/10.1103/physrevb.19.2457
14 https://doi.org/10.1103/physreve.73.066106
15 https://doi.org/10.1103/physreve.79.061104
16 https://doi.org/10.1103/physreve.89.062301
17 https://doi.org/10.1103/physrevlett.100.218103
18 https://doi.org/10.1103/physrevlett.107.155704
19 https://doi.org/10.1103/physrevlett.108.168301
20 https://doi.org/10.1103/physrevlett.108.235702
21 https://doi.org/10.1103/physrevlett.108.238001
22 https://doi.org/10.1103/physrevlett.110.055701
23 https://doi.org/10.1103/physrevlett.110.055702
24 https://doi.org/10.1103/physrevlett.110.238301
25 https://doi.org/10.1103/physrevlett.112.168301
26 https://doi.org/10.1103/physrevlett.112.218304
27 https://doi.org/10.1103/physrevlett.113.028103
28 https://doi.org/10.1103/physrevlett.114.035702
29 https://doi.org/10.1103/physrevlett.114.198301
30 https://doi.org/10.1103/physrevlett.117.038103
31 https://doi.org/10.1103/physrevlett.118.158001
32 https://doi.org/10.1103/physrevlett.119.268002
33 https://doi.org/10.1103/physrevlett.17.1133
34 https://doi.org/10.1103/physrevlett.41.121
35 https://doi.org/10.1103/physrevlett.75.1226
36 https://doi.org/10.1103/physrevlett.82.2721
37 https://doi.org/10.1103/physrevx.5.031025
38 https://doi.org/10.1146/annurev-conmatphys-031214-014710
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description Active matter has been much studied for its intriguing properties such as collective motion, motility-induced phase separation and giant fluctuations. However, it has remained unclear how the states of active materials connect with the equilibrium phases. For two-dimensional systems, this is also because the understanding of the liquid, hexatic, and solid equilibrium phases and their phase transitions is recent. Here we show that two-dimensional self-propelled point particles with inverse-power-law repulsions moving with a kinetic Monte Carlo algorithm without alignment interactions preserve all equilibrium phases up to very large activities. Furthermore, at high activity within the liquid phase, a critical point opens up a gas-liquid motility-induced phase separation region. In our model, two-step melting and motility-induced phase separation are thus independent phenomena. We discuss the reasons for these findings to be common to a wide class of two-dimensional active systems.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N189268cee58e44ee9e4b8511952b30d9
46 Ndce22fab936343db8e6e949e674d713e
47 sg:journal.1043282
48 schema:name Thermodynamic phases in two-dimensional active matter
49 schema:pagination 5045
50 schema:productId N712c7ce8212f4554bce4b6413715952e
51 N74c02ef6479649e7a68568e087084147
52 Nb6163219cb5147f0b8e3ee9403ba6482
53 Ndc72336883004b459209516d7f000b58
54 Nf3b62470fa3249068479cf9ad2a13ae2
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110134145
56 https://doi.org/10.1038/s41467-018-07491-5
57 schema:sdDatePublished 2019-04-11T08:16
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Ndeb55597310a465e8ce1a1c1304876fd
60 schema:url https://www.nature.com/articles/s41467-018-07491-5
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N03e40be50bbc4be4af2184bc7a1af901 rdf:first sg:person.01230412044.86
65 rdf:rest N48dc11b9b9d14a51915c1647adcb8cf9
66 N189268cee58e44ee9e4b8511952b30d9 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N48dc11b9b9d14a51915c1647adcb8cf9 rdf:first sg:person.0605421611.65
69 rdf:rest rdf:nil
70 N712c7ce8212f4554bce4b6413715952e schema:name pubmed_id
71 schema:value 30487582
72 rdf:type schema:PropertyValue
73 N74c02ef6479649e7a68568e087084147 schema:name doi
74 schema:value 10.1038/s41467-018-07491-5
75 rdf:type schema:PropertyValue
76 Nb6163219cb5147f0b8e3ee9403ba6482 schema:name nlm_unique_id
77 schema:value 101528555
78 rdf:type schema:PropertyValue
79 Ndc72336883004b459209516d7f000b58 schema:name readcube_id
80 schema:value c335997872e40a5d7ac5c21dd4e60a329c32fcddd1a2542d1ec4c9c729392417
81 rdf:type schema:PropertyValue
82 Ndce22fab936343db8e6e949e674d713e schema:volumeNumber 9
83 rdf:type schema:PublicationVolume
84 Ndeb55597310a465e8ce1a1c1304876fd schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nee485b3d76c547658da91fbda082e30f rdf:first sg:person.012733406737.53
87 rdf:rest N03e40be50bbc4be4af2184bc7a1af901
88 Nf3b62470fa3249068479cf9ad2a13ae2 schema:name dimensions_id
89 schema:value pub.1110134145
90 rdf:type schema:PropertyValue
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Chemistry (incl. Structural)
96 rdf:type schema:DefinedTerm
97 sg:journal.1043282 schema:issn 2041-1723
98 schema:name Nature Communications
99 rdf:type schema:Periodical
100 sg:person.01230412044.86 schema:affiliation https://www.grid.ac/institutes/grid.5330.5
101 schema:familyName Kapfer
102 schema:givenName Sebastian C.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412044.86
104 rdf:type schema:Person
105 sg:person.012733406737.53 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
106 schema:familyName Klamser
107 schema:givenName Juliane U.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733406737.53
109 rdf:type schema:Person
110 sg:person.0605421611.65 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
111 schema:familyName Krauth
112 schema:givenName Werner
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605421611.65
114 rdf:type schema:Person
115 sg:pub.10.1038/ncomms5351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016313268
116 https://doi.org/10.1038/ncomms5351
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nphys3377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018690867
119 https://doi.org/10.1038/nphys3377
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/cphc.200900755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033550991
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.1695931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057767148
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.4774084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032249681
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1080/00268976.2016.1155777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008635675
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0034-4885/75/4/042601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007146822
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrev.176.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440145
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.19.1855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060524941
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.19.2457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060525025
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreve.73.066106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050360762
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreve.79.061104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060739054
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreve.89.062301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032213433
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.100.218103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033675301
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.107.155704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045567797
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.108.168301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529226
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.108.235702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001888347
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.108.238001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040408121
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.110.055701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035071292
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.110.055702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032781907
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.110.238301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024825166
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.112.168301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045382693
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.112.218304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367265
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.113.028103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041838583
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.114.035702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014564028
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.114.198301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030250583
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.117.038103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060765946
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.118.158001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084786720
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.119.268002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100299799
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.17.1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060769116
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.41.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782955
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.75.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003549718
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.82.2721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819206
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevx.5.031025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021954172
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1146/annurev-conmatphys-031214-014710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006590936
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
188 schema:name Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033, Bunkyo, Tokyo, Japan
189 Laboratoire de Physique Statistique, Département de physique de l’ENS, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France
190 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187, Dresden, Germany
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
193 schema:name Laboratoire de Physique Statistique, Département de physique de l’ENS, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005, Paris, France
194 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187, Dresden, Germany
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.5330.5 schema:alternateName University of Erlangen-Nuremberg
197 schema:name Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187, Dresden, Germany
198 Theoretische Physik 1, FAU Erlangen-Nürnberg, Staudtstr. 7, 91058, Erlangen, Germany
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...