Narrow bounds for the quantum capacity of thermal attenuators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-18

AUTHORS

Matteo Rosati, Andrea Mari, Vittorio Giovannetti

ABSTRACT

Thermal attenuator channels model the decoherence of quantum systems interacting with a thermal bath, e.g., a two-level system subject to thermal noise and an electromagnetic signal traveling through a fiber or in free-space. Hence determining the quantum capacity of these channels is an outstanding open problem for quantum computation and communication. Here we derive several upper bounds on the quantum capacity of qubit and bosonic thermal attenuators. We introduce an extended version of such channels which is degradable and hence has a single-letter quantum capacity, bounding that of the original thermal attenuators. Another bound for bosonic attenuators is given by the bottleneck inequality applied to a particular channel decomposition. With respect to previously known bounds we report better results in a broad range of attenuation and noise: we can now approximate the quantum capacity up to a negligible uncertainty for most practical applications, e.g., for low thermal noise. More... »

PAGES

4339

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-06848-0

DOI

http://dx.doi.org/10.1038/s41467-018-06848-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107590396

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30337632


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.509494.5", 
          "name": [
            "F\u00edsica Te\u00f2rica: Informaci\u00f3 i Fen\u00f2mens Qu\u00e0ntics, Departament de F\u00edsica, Universitat Aut\u00f2noma de Barcelona, 08193 Bellaterra, Spain", 
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosati", 
        "givenName": "Matteo", 
        "id": "sg:person.012211160251.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211160251.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.509494.5", 
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mari", 
        "givenName": "Andrea", 
        "id": "sg:person.01166013734.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166013734.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy", 
          "id": "http://www.grid.ac/institutes/grid.509494.5", 
          "name": [
            "NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giovannetti", 
        "givenName": "Vittorio", 
        "id": "sg:person.0751566121.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00220-014-2150-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035207380", 
          "https://doi.org/10.1007/s00220-014-2150-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013804351", 
          "https://doi.org/10.1038/ncomms7739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0032946008030010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038732279", 
          "https://doi.org/10.1134/s0032946008030010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005171119", 
          "https://doi.org/10.1038/nphoton.2014.216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-017-2885-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085177640", 
          "https://doi.org/10.1007/s00220-017-2885-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048583046", 
          "https://doi.org/10.1038/nphys1224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050601467", 
          "https://doi.org/10.1038/ncomms4826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085064865", 
          "https://doi.org/10.1038/ncomms15043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-49725-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036373241", 
          "https://doi.org/10.1007/978-3-662-49725-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-005-1317-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041069227", 
          "https://doi.org/10.1007/s00220-005-1317-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-18", 
    "datePublishedReg": "2018-10-18", 
    "description": "Thermal attenuator channels model the decoherence of quantum systems interacting with a thermal bath, e.g., a two-level system subject to thermal noise and an electromagnetic signal traveling through a fiber or in free-space. Hence determining the quantum capacity of these channels is an outstanding open problem for quantum computation and communication. Here we derive several upper bounds on the quantum capacity of qubit and bosonic thermal attenuators. We introduce an extended version of such channels which is degradable and hence has a single-letter quantum capacity, bounding that of the original thermal attenuators. Another bound for bosonic attenuators is given by the bottleneck inequality applied to a particular channel decomposition. With respect to previously known bounds we report better results in a broad range of attenuation and noise: we can now approximate the quantum capacity up to a negligible uncertainty for most practical applications, e.g., for low thermal noise.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-06848-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "quantum capacity", 
      "thermal attenuator", 
      "outstanding open problem", 
      "two-level system", 
      "most practical applications", 
      "quantum systems", 
      "quantum computation", 
      "upper bounds", 
      "thermal noise", 
      "open problem", 
      "thermal bath", 
      "bounds", 
      "channel decomposition", 
      "narrow bounds", 
      "electromagnetic signals", 
      "negligible uncertainty", 
      "extended version", 
      "practical applications", 
      "low thermal noise", 
      "noise", 
      "such channels", 
      "decoherence", 
      "qubits", 
      "computation", 
      "inequality", 
      "uncertainty", 
      "attenuator", 
      "problem", 
      "better results", 
      "system", 
      "channels", 
      "decomposition", 
      "version", 
      "broad range", 
      "applications", 
      "signals", 
      "attenuation", 
      "respect", 
      "bath", 
      "results", 
      "range", 
      "fibers", 
      "communication", 
      "capacity", 
      "Thermal attenuator channels", 
      "attenuator channels", 
      "bosonic thermal attenuators", 
      "single-letter quantum capacity", 
      "original thermal attenuators", 
      "bosonic attenuators", 
      "bottleneck inequality", 
      "particular channel decomposition"
    ], 
    "name": "Narrow bounds for the quantum capacity of thermal attenuators", 
    "pagination": "4339", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107590396"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-06848-0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30337632"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-06848-0", 
      "https://app.dimensions.ai/details/publication/pub.1107590396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-06848-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06848-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06848-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06848-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06848-0'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      22 PREDICATES      88 URIs      70 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-06848-0 schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author Nbc158ad15e0e400f9e2bc8e3943863ee
4 schema:citation sg:pub.10.1007/978-3-662-49725-8
5 sg:pub.10.1007/s00220-005-1317-6
6 sg:pub.10.1007/s00220-014-2150-6
7 sg:pub.10.1007/s00220-017-2885-y
8 sg:pub.10.1038/ncomms15043
9 sg:pub.10.1038/ncomms4826
10 sg:pub.10.1038/ncomms7739
11 sg:pub.10.1038/nphoton.2014.216
12 sg:pub.10.1038/nphys1224
13 sg:pub.10.1134/s0032946008030010
14 schema:datePublished 2018-10-18
15 schema:datePublishedReg 2018-10-18
16 schema:description Thermal attenuator channels model the decoherence of quantum systems interacting with a thermal bath, e.g., a two-level system subject to thermal noise and an electromagnetic signal traveling through a fiber or in free-space. Hence determining the quantum capacity of these channels is an outstanding open problem for quantum computation and communication. Here we derive several upper bounds on the quantum capacity of qubit and bosonic thermal attenuators. We introduce an extended version of such channels which is degradable and hence has a single-letter quantum capacity, bounding that of the original thermal attenuators. Another bound for bosonic attenuators is given by the bottleneck inequality applied to a particular channel decomposition. With respect to previously known bounds we report better results in a broad range of attenuation and noise: we can now approximate the quantum capacity up to a negligible uncertainty for most practical applications, e.g., for low thermal noise.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N14097a9c426741519c57035ee7f500b1
21 Nb3fa4335a4ce47c5846906b4afeecfd1
22 sg:journal.1043282
23 schema:keywords Thermal attenuator channels
24 applications
25 attenuation
26 attenuator
27 attenuator channels
28 bath
29 better results
30 bosonic attenuators
31 bosonic thermal attenuators
32 bottleneck inequality
33 bounds
34 broad range
35 capacity
36 channel decomposition
37 channels
38 communication
39 computation
40 decoherence
41 decomposition
42 electromagnetic signals
43 extended version
44 fibers
45 inequality
46 low thermal noise
47 most practical applications
48 narrow bounds
49 negligible uncertainty
50 noise
51 open problem
52 original thermal attenuators
53 outstanding open problem
54 particular channel decomposition
55 practical applications
56 problem
57 quantum capacity
58 quantum computation
59 quantum systems
60 qubits
61 range
62 respect
63 results
64 signals
65 single-letter quantum capacity
66 such channels
67 system
68 thermal attenuator
69 thermal bath
70 thermal noise
71 two-level system
72 uncertainty
73 upper bounds
74 version
75 schema:name Narrow bounds for the quantum capacity of thermal attenuators
76 schema:pagination 4339
77 schema:productId N0e23e79f69644dc8bf1245be9195b530
78 N2a14001e99cd4cf7a7144dfa3e72ea63
79 N463a851e8aee44fcad0479b0c553b748
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107590396
81 https://doi.org/10.1038/s41467-018-06848-0
82 schema:sdDatePublished 2021-11-01T18:30
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N74bbc783f0b144119ca237b738b5fcd3
85 schema:url https://doi.org/10.1038/s41467-018-06848-0
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0e23e79f69644dc8bf1245be9195b530 schema:name dimensions_id
90 schema:value pub.1107590396
91 rdf:type schema:PropertyValue
92 N14097a9c426741519c57035ee7f500b1 schema:volumeNumber 9
93 rdf:type schema:PublicationVolume
94 N2a14001e99cd4cf7a7144dfa3e72ea63 schema:name doi
95 schema:value 10.1038/s41467-018-06848-0
96 rdf:type schema:PropertyValue
97 N463a851e8aee44fcad0479b0c553b748 schema:name pubmed_id
98 schema:value 30337632
99 rdf:type schema:PropertyValue
100 N4dd53f22b4df41ddadf0d7e0c51f4945 rdf:first sg:person.01166013734.75
101 rdf:rest N86e46469f0704d7fa528fb97f3bd3e3d
102 N74bbc783f0b144119ca237b738b5fcd3 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N86e46469f0704d7fa528fb97f3bd3e3d rdf:first sg:person.0751566121.99
105 rdf:rest rdf:nil
106 Nb3fa4335a4ce47c5846906b4afeecfd1 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 Nbc158ad15e0e400f9e2bc8e3943863ee rdf:first sg:person.012211160251.44
109 rdf:rest N4dd53f22b4df41ddadf0d7e0c51f4945
110 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
114 schema:name Quantum Physics
115 rdf:type schema:DefinedTerm
116 sg:journal.1043282 schema:issn 2041-1723
117 schema:name Nature Communications
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01166013734.75 schema:affiliation grid-institutes:grid.509494.5
121 schema:familyName Mari
122 schema:givenName Andrea
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166013734.75
124 rdf:type schema:Person
125 sg:person.012211160251.44 schema:affiliation grid-institutes:grid.509494.5
126 schema:familyName Rosati
127 schema:givenName Matteo
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012211160251.44
129 rdf:type schema:Person
130 sg:person.0751566121.99 schema:affiliation grid-institutes:grid.509494.5
131 schema:familyName Giovannetti
132 schema:givenName Vittorio
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751566121.99
134 rdf:type schema:Person
135 sg:pub.10.1007/978-3-662-49725-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036373241
136 https://doi.org/10.1007/978-3-662-49725-8
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00220-005-1317-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041069227
139 https://doi.org/10.1007/s00220-005-1317-6
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00220-014-2150-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035207380
142 https://doi.org/10.1007/s00220-014-2150-6
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00220-017-2885-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085177640
145 https://doi.org/10.1007/s00220-017-2885-y
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/ncomms15043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085064865
148 https://doi.org/10.1038/ncomms15043
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/ncomms4826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050601467
151 https://doi.org/10.1038/ncomms4826
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/ncomms7739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013804351
154 https://doi.org/10.1038/ncomms7739
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nphoton.2014.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005171119
157 https://doi.org/10.1038/nphoton.2014.216
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nphys1224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048583046
160 https://doi.org/10.1038/nphys1224
161 rdf:type schema:CreativeWork
162 sg:pub.10.1134/s0032946008030010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038732279
163 https://doi.org/10.1134/s0032946008030010
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.509494.5 schema:alternateName NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy
166 schema:name Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
167 NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, 56127 Pisa, Italy
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...