Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-08

AUTHORS

Joshua Hutchings, Viktoriya Stancheva, Elizabeth A. Miller, Giulia Zanetti

ABSTRACT

Eukaryotic cells employ membrane-bound carriers to transport cargo between compartments in a process essential to cell functionality. Carriers are generated by coat complexes that couple cargo capture to membrane deformation. The COPII coat mediates export from the endoplasmic reticulum by assembling in inner and outer layers, yielding carriers of variable shape and size that allow secretion of thousands of diverse cargo. Despite detailed understanding of COPII subunits, the molecular mechanisms of coat assembly and membrane deformation are unclear. Here we present a 4.9 Å cryo-tomography subtomogram averaging structure of in vitro-reconstituted membrane-bound inner coat. We show that the outer coat (Sec13–Sec31) bridges inner coat subunits (Sar1–Sec23–Sec24), promoting their assembly into a tight lattice. We directly visualize the membrane-embedded Sar1 amphipathic helix, revealing that lattice formation induces parallel helix insertions, yielding tubular curvature. We propose that regulators like the procollagen receptor TANGO1 modulate this mechanism to determine vesicle shape and size. More... »

PAGES

4154

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-06577-4

DOI

http://dx.doi.org/10.1038/s41467-018-06577-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107363261

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30297805


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COP-Coated Vesicles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cryoelectron Microscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electron Microscope Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endoplasmic Reticulum", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Membrane Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Transport", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Saccharomyces cerevisiae Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sf9 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spodoptera", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Structural and Molecular Biology, Birkbeck College, Malet St., WC1E 7HX, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.509978.a", 
          "name": [
            "Institute of Structural and Molecular Biology, Birkbeck College, Malet St., WC1E 7HX, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hutchings", 
        "givenName": "Joshua", 
        "id": "sg:person.07764712606.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07764712606.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology, Francis Crick Ave., CB2 0QH, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "MRC Laboratory of Molecular Biology, Francis Crick Ave., CB2 0QH, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stancheva", 
        "givenName": "Viktoriya", 
        "id": "sg:person.012565777104.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012565777104.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "MRC Laboratory of Molecular Biology, Francis Crick Ave., CB2 0QH, Cambridge, UK", 
          "id": "http://www.grid.ac/institutes/grid.42475.30", 
          "name": [
            "MRC Laboratory of Molecular Biology, Francis Crick Ave., CB2 0QH, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Elizabeth A.", 
        "id": "sg:person.0627102647.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627102647.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Structural and Molecular Biology, Birkbeck College, Malet St., WC1E 7HX, London, UK", 
          "id": "http://www.grid.ac/institutes/grid.509978.a", 
          "name": [
            "Institute of Structural and Molecular Biology, Birkbeck College, Malet St., WC1E 7HX, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zanetti", 
        "givenName": "Giulia", 
        "id": "sg:person.01220007377.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220007377.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35078500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005889743", 
          "https://doi.org/10.1038/35078500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129286", 
          "https://doi.org/10.1038/nmeth.4193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncb2390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042603741", 
          "https://doi.org/10.1038/ncb2390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001233428", 
          "https://doi.org/10.1038/nature01040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019599431", 
          "https://doi.org/10.1038/nature04396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007438875", 
          "https://doi.org/10.1038/nature04339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048569722", 
          "https://doi.org/10.1038/srep00017"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-08", 
    "datePublishedReg": "2018-10-08", 
    "description": "Eukaryotic cells employ membrane-bound carriers to transport cargo between compartments in a process essential to cell functionality. Carriers are generated by coat complexes that couple cargo capture to membrane deformation. The COPII coat mediates export from the endoplasmic reticulum by assembling in inner and outer layers, yielding carriers of variable shape and size that allow secretion of thousands of diverse cargo. Despite detailed understanding of COPII subunits, the molecular mechanisms of coat assembly and membrane deformation are\u00a0unclear. Here we present a 4.9\u2009\u00c5 cryo-tomography subtomogram averaging structure of in vitro-reconstituted membrane-bound inner coat. We show that the outer coat (Sec13\u2013Sec31) bridges inner coat subunits (Sar1\u2013Sec23\u2013Sec24), promoting their assembly into a tight lattice. We directly visualize the membrane-embedded Sar1 amphipathic helix, revealing that lattice formation induces parallel helix insertions, yielding tubular curvature. We propose that regulators like the procollagen receptor TANGO1 modulate this mechanism to determine vesicle shape and size.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-06577-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4294432", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3940318", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4580642", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "membrane deformation", 
      "membrane-bound carriers", 
      "COPII assembly", 
      "eukaryotic cells", 
      "coat complex", 
      "COPII coat", 
      "COPII subunits", 
      "coat assembly", 
      "coat subunits", 
      "amphipathic helix", 
      "subtomogram averaging", 
      "helix insertion", 
      "diverse cargoes", 
      "cargo capture", 
      "molecular mechanisms", 
      "endoplasmic reticulum", 
      "membrane shape", 
      "subunits", 
      "cell functionality", 
      "inner coat", 
      "outer coat", 
      "assembly", 
      "cargo", 
      "detailed understanding", 
      "coat", 
      "TANGO1", 
      "vesicle shape", 
      "regulator", 
      "reticulum", 
      "helix", 
      "lattice formation", 
      "mechanism", 
      "compartments", 
      "cells", 
      "complexes", 
      "export", 
      "secretion", 
      "thousands", 
      "insertion", 
      "variable shape", 
      "outer layer", 
      "understanding", 
      "size", 
      "formation", 
      "capture", 
      "structure", 
      "shape", 
      "process", 
      "organization", 
      "carriers", 
      "functionality", 
      "averaging", 
      "layer", 
      "curvature", 
      "lattice", 
      "deformation", 
      "tight lattice", 
      "tubular curvature"
    ], 
    "name": "Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape", 
    "pagination": "4154", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107363261"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-06577-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30297805"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-06577-4", 
      "https://app.dimensions.ai/details/publication/pub.1107363261"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_794.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-06577-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06577-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06577-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06577-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06577-4'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      22 PREDICATES      103 URIs      88 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-06577-4 schema:about N0f56c2df0ffc4c2aa0f12722ef42e023
2 N22347aecef3c4e409be8bea3f99076bd
3 N48fc35a47eb245fca547b095873ca454
4 N4ba36a0c6cc546cfa8a415a050bafdbb
5 N509e03af67284022b2b4a814cdb14486
6 N5930db17ede449f690fbfea08dcd9dff
7 N60be94d7e704475aa71dfe8c253d0df7
8 N62182f28ffd440e296d2370a051405b0
9 N782aa510709d421e8b96b19cd775ecae
10 N898ffde2ad644984910d1435b942f6f7
11 Nd043ae0d96ad4b5aa4e2ce0b8a6ed304
12 Ne8614294f8144331bad1c3e1a0eba510
13 anzsrc-for:06
14 anzsrc-for:0601
15 schema:author Ncd91db973fa94b97ab9df13df1a07e1c
16 schema:citation sg:pub.10.1038/35078500
17 sg:pub.10.1038/nature01040
18 sg:pub.10.1038/nature04339
19 sg:pub.10.1038/nature04396
20 sg:pub.10.1038/ncb2390
21 sg:pub.10.1038/nmeth.4193
22 sg:pub.10.1038/srep00017
23 schema:datePublished 2018-10-08
24 schema:datePublishedReg 2018-10-08
25 schema:description Eukaryotic cells employ membrane-bound carriers to transport cargo between compartments in a process essential to cell functionality. Carriers are generated by coat complexes that couple cargo capture to membrane deformation. The COPII coat mediates export from the endoplasmic reticulum by assembling in inner and outer layers, yielding carriers of variable shape and size that allow secretion of thousands of diverse cargo. Despite detailed understanding of COPII subunits, the molecular mechanisms of coat assembly and membrane deformation are unclear. Here we present a 4.9 Å cryo-tomography subtomogram averaging structure of in vitro-reconstituted membrane-bound inner coat. We show that the outer coat (Sec13–Sec31) bridges inner coat subunits (Sar1–Sec23–Sec24), promoting their assembly into a tight lattice. We directly visualize the membrane-embedded Sar1 amphipathic helix, revealing that lattice formation induces parallel helix insertions, yielding tubular curvature. We propose that regulators like the procollagen receptor TANGO1 modulate this mechanism to determine vesicle shape and size.
26 schema:genre article
27 schema:inLanguage en
28 schema:isAccessibleForFree true
29 schema:isPartOf N124b95a37fba4197bc1e61ff44abd2c1
30 N5993fab3a6b0460eb98f777a3491c9e6
31 sg:journal.1043282
32 schema:keywords COPII assembly
33 COPII coat
34 COPII subunits
35 TANGO1
36 amphipathic helix
37 assembly
38 averaging
39 capture
40 cargo
41 cargo capture
42 carriers
43 cell functionality
44 cells
45 coat
46 coat assembly
47 coat complex
48 coat subunits
49 compartments
50 complexes
51 curvature
52 deformation
53 detailed understanding
54 diverse cargoes
55 endoplasmic reticulum
56 eukaryotic cells
57 export
58 formation
59 functionality
60 helix
61 helix insertion
62 inner coat
63 insertion
64 lattice
65 lattice formation
66 layer
67 mechanism
68 membrane deformation
69 membrane shape
70 membrane-bound carriers
71 molecular mechanisms
72 organization
73 outer coat
74 outer layer
75 process
76 regulator
77 reticulum
78 secretion
79 shape
80 size
81 structure
82 subtomogram averaging
83 subunits
84 thousands
85 tight lattice
86 tubular curvature
87 understanding
88 variable shape
89 vesicle shape
90 schema:name Subtomogram averaging of COPII assemblies reveals how coat organization dictates membrane shape
91 schema:pagination 4154
92 schema:productId N2abb14a7241040d48525b74ab22dc13e
93 Ncdec8cbca5984da89ce17e80b3b222b1
94 Nfc35f37322054405886f4f6282110748
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363261
96 https://doi.org/10.1038/s41467-018-06577-4
97 schema:sdDatePublished 2022-06-01T22:20
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N19d20bfc21324dfe877fd47406a10eed
100 schema:url https://doi.org/10.1038/s41467-018-06577-4
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N0f56c2df0ffc4c2aa0f12722ef42e023 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Sf9 Cells
106 rdf:type schema:DefinedTerm
107 N124b95a37fba4197bc1e61ff44abd2c1 schema:volumeNumber 9
108 rdf:type schema:PublicationVolume
109 N16facd1bd06844da8aaeb6391f9189f3 rdf:first sg:person.0627102647.36
110 rdf:rest N32eca525d77a40d0a458a6dc9f2a987e
111 N19d20bfc21324dfe877fd47406a10eed schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 N22347aecef3c4e409be8bea3f99076bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name COP-Coated Vesicles
115 rdf:type schema:DefinedTerm
116 N2abb14a7241040d48525b74ab22dc13e schema:name dimensions_id
117 schema:value pub.1107363261
118 rdf:type schema:PropertyValue
119 N32eca525d77a40d0a458a6dc9f2a987e rdf:first sg:person.01220007377.23
120 rdf:rest rdf:nil
121 N48fc35a47eb245fca547b095873ca454 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Spodoptera
123 rdf:type schema:DefinedTerm
124 N4ba36a0c6cc546cfa8a415a050bafdbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Membrane Transport Proteins
126 rdf:type schema:DefinedTerm
127 N509e03af67284022b2b4a814cdb14486 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Cryoelectron Microscopy
129 rdf:type schema:DefinedTerm
130 N5930db17ede449f690fbfea08dcd9dff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Electron Microscope Tomography
132 rdf:type schema:DefinedTerm
133 N5993fab3a6b0460eb98f777a3491c9e6 schema:issueNumber 1
134 rdf:type schema:PublicationIssue
135 N60be94d7e704475aa71dfe8c253d0df7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Protein Binding
137 rdf:type schema:DefinedTerm
138 N62182f28ffd440e296d2370a051405b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Endoplasmic Reticulum
140 rdf:type schema:DefinedTerm
141 N650a6521daad405facb6da5d73bb54dc rdf:first sg:person.012565777104.05
142 rdf:rest N16facd1bd06844da8aaeb6391f9189f3
143 N782aa510709d421e8b96b19cd775ecae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Protein Transport
145 rdf:type schema:DefinedTerm
146 N898ffde2ad644984910d1435b942f6f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Saccharomyces cerevisiae Proteins
148 rdf:type schema:DefinedTerm
149 Ncd91db973fa94b97ab9df13df1a07e1c rdf:first sg:person.07764712606.84
150 rdf:rest N650a6521daad405facb6da5d73bb54dc
151 Ncdec8cbca5984da89ce17e80b3b222b1 schema:name doi
152 schema:value 10.1038/s41467-018-06577-4
153 rdf:type schema:PropertyValue
154 Nd043ae0d96ad4b5aa4e2ce0b8a6ed304 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Cell Membrane
156 rdf:type schema:DefinedTerm
157 Ne8614294f8144331bad1c3e1a0eba510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Animals
159 rdf:type schema:DefinedTerm
160 Nfc35f37322054405886f4f6282110748 schema:name pubmed_id
161 schema:value 30297805
162 rdf:type schema:PropertyValue
163 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
164 schema:name Biological Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
167 schema:name Biochemistry and Cell Biology
168 rdf:type schema:DefinedTerm
169 sg:grant.3940318 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06577-4
170 rdf:type schema:MonetaryGrant
171 sg:grant.4294432 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06577-4
172 rdf:type schema:MonetaryGrant
173 sg:grant.4580642 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06577-4
174 rdf:type schema:MonetaryGrant
175 sg:journal.1043282 schema:issn 2041-1723
176 schema:name Nature Communications
177 schema:publisher Springer Nature
178 rdf:type schema:Periodical
179 sg:person.01220007377.23 schema:affiliation grid-institutes:grid.509978.a
180 schema:familyName Zanetti
181 schema:givenName Giulia
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220007377.23
183 rdf:type schema:Person
184 sg:person.012565777104.05 schema:affiliation grid-institutes:grid.42475.30
185 schema:familyName Stancheva
186 schema:givenName Viktoriya
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012565777104.05
188 rdf:type schema:Person
189 sg:person.0627102647.36 schema:affiliation grid-institutes:grid.42475.30
190 schema:familyName Miller
191 schema:givenName Elizabeth A.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627102647.36
193 rdf:type schema:Person
194 sg:person.07764712606.84 schema:affiliation grid-institutes:grid.509978.a
195 schema:familyName Hutchings
196 schema:givenName Joshua
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07764712606.84
198 rdf:type schema:Person
199 sg:pub.10.1038/35078500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005889743
200 https://doi.org/10.1038/35078500
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature01040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001233428
203 https://doi.org/10.1038/nature01040
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nature04339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007438875
206 https://doi.org/10.1038/nature04339
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nature04396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019599431
209 https://doi.org/10.1038/nature04396
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/ncb2390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042603741
212 https://doi.org/10.1038/ncb2390
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nmeth.4193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129286
215 https://doi.org/10.1038/nmeth.4193
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/srep00017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048569722
218 https://doi.org/10.1038/srep00017
219 rdf:type schema:CreativeWork
220 grid-institutes:grid.42475.30 schema:alternateName MRC Laboratory of Molecular Biology, Francis Crick Ave., CB2 0QH, Cambridge, UK
221 schema:name MRC Laboratory of Molecular Biology, Francis Crick Ave., CB2 0QH, Cambridge, UK
222 rdf:type schema:Organization
223 grid-institutes:grid.509978.a schema:alternateName Institute of Structural and Molecular Biology, Birkbeck College, Malet St., WC1E 7HX, London, UK
224 schema:name Institute of Structural and Molecular Biology, Birkbeck College, Malet St., WC1E 7HX, London, UK
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...