Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-27

AUTHORS

Fan Zhu, Shuangxi Song, Kolan Madhav Reddy, Akihiko Hirata, Mingwei Chen

ABSTRACT

The mechanical properties of crystalline materials can be quantitatively described by crystal defects of solute atoms, dislocations, twins, and grain boundaries with the models of solid solution strengthening, Taylor strain hardening and Hall–Petch grain boundary strengthening. However, for metallic glasses, a well-defined structure feature which dominates the mechanical properties of the disordered materials is still missing. Here, we report that nanoscale spatial heterogeneity is the inherent structural feature of metallic glasses. It has an intrinsic correlation with the strength and deformation behavior. The strength and Young’s modulus of metallic glasses can be defined by the function of the square root reciprocal of the characteristic length of the spatial heterogeneity. Moreover, the stretching exponent of time-dependent strain relaxation can be quantitatively described by the characteristic length. Our study provides compelling evidence that the spatial heterogeneity is a feasible structural indicator for portraying mechanical properties of metallic glasses. More... »

PAGES

3965

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8

DOI

http://dx.doi.org/10.1038/s41467-018-06476-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107189137

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30262846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Fan", 
        "id": "sg:person.01002677477.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Shuangxi", 
        "id": "sg:person.010046770425.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046770425.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reddy", 
        "givenName": "Kolan Madhav", 
        "id": "sg:person.0722215311.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722215311.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Akihiko", 
        "id": "sg:person.01054462015.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms13733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038406884", 
          "https://doi.org/10.1038/ncomms13733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007316134", 
          "https://doi.org/10.1038/nmat3024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038668432", 
          "https://doi.org/10.1038/ncomms4204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034149236", 
          "https://doi.org/10.1038/nmat2802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017749130", 
          "https://doi.org/10.1038/ncomms6823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049615186", 
          "https://doi.org/10.1038/ncomms11516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2004.19.1.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043491812", 
          "https://doi.org/10.1557/jmr.2004.19.1.46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040854939", 
          "https://doi.org/10.1038/ncomms9310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042683802", 
          "https://doi.org/10.1038/nmat4300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008328312", 
          "https://doi.org/10.1038/nmat2897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1992.1564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043643805", 
          "https://doi.org/10.1557/jmr.1992.1564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03604-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101558945", 
          "https://doi.org/10.1038/s41467-018-03604-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014001816", 
          "https://doi.org/10.1038/nature14674"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-27", 
    "datePublishedReg": "2018-09-27", 
    "description": "The mechanical properties of crystalline materials can be quantitatively described by crystal defects of solute atoms, dislocations, twins, and grain boundaries with the models of solid solution strengthening, Taylor strain hardening and Hall\u2013Petch grain boundary strengthening. However, for metallic glasses, a well-defined structure feature which dominates the mechanical properties of the\u00a0disordered materials is still missing. Here, we report that nanoscale spatial heterogeneity is the inherent structural feature of metallic glasses. It has an intrinsic correlation with the strength and deformation behavior. The strength and Young\u2019s modulus of metallic glasses can be defined by the function of the square root reciprocal of the characteristic length of the spatial heterogeneity. Moreover, the stretching exponent of time-dependent strain relaxation can be quantitatively described by the characteristic length. Our study provides compelling evidence that the spatial heterogeneity is a feasible structural indicator for portraying mechanical properties of metallic glasses.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-06476-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8130872", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6819639", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8115752", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "mechanical properties", 
      "metallic glasses", 
      "grain boundary strengthening", 
      "solid solution strengthening", 
      "characteristic length", 
      "boundary strengthening", 
      "solution strengthening", 
      "deformation behavior", 
      "grain boundaries", 
      "Young's modulus", 
      "strain relaxation", 
      "structure-property relationships", 
      "solute atoms", 
      "structure features", 
      "nanoscale spatial heterogeneity", 
      "crystal defects", 
      "crystalline materials", 
      "modulus", 
      "glass", 
      "strength", 
      "properties", 
      "materials", 
      "strengthening", 
      "square root", 
      "inherent structural features", 
      "spatial heterogeneity", 
      "dislocations", 
      "intrinsic correlation", 
      "boundaries", 
      "length", 
      "behavior", 
      "features", 
      "structural features", 
      "defects", 
      "exponent", 
      "model", 
      "relaxation", 
      "structural indicators", 
      "twins", 
      "Taylor", 
      "atoms", 
      "function", 
      "heterogeneity", 
      "study", 
      "correlation", 
      "indicators", 
      "roots", 
      "relationship", 
      "compelling evidence", 
      "evidence"
    ], 
    "name": "Spatial heterogeneity as the structure feature for structure\u2013property relationship of metallic glasses", 
    "pagination": "3965", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107189137"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-06476-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30262846"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-06476-8", 
      "https://app.dimensions.ai/details/publication/pub.1107189137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-06476-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      88 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-06476-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N921209e3e7b84958b1a434dcda820ad3
4 schema:citation sg:pub.10.1038/nature14674
5 sg:pub.10.1038/ncomms11516
6 sg:pub.10.1038/ncomms13733
7 sg:pub.10.1038/ncomms4204
8 sg:pub.10.1038/ncomms6823
9 sg:pub.10.1038/ncomms9310
10 sg:pub.10.1038/nmat2802
11 sg:pub.10.1038/nmat2897
12 sg:pub.10.1038/nmat3024
13 sg:pub.10.1038/nmat4300
14 sg:pub.10.1038/s41467-018-03604-2
15 sg:pub.10.1557/jmr.1992.1564
16 sg:pub.10.1557/jmr.2004.19.1.46
17 schema:datePublished 2018-09-27
18 schema:datePublishedReg 2018-09-27
19 schema:description The mechanical properties of crystalline materials can be quantitatively described by crystal defects of solute atoms, dislocations, twins, and grain boundaries with the models of solid solution strengthening, Taylor strain hardening and Hall–Petch grain boundary strengthening. However, for metallic glasses, a well-defined structure feature which dominates the mechanical properties of the disordered materials is still missing. Here, we report that nanoscale spatial heterogeneity is the inherent structural feature of metallic glasses. It has an intrinsic correlation with the strength and deformation behavior. The strength and Young’s modulus of metallic glasses can be defined by the function of the square root reciprocal of the characteristic length of the spatial heterogeneity. Moreover, the stretching exponent of time-dependent strain relaxation can be quantitatively described by the characteristic length. Our study provides compelling evidence that the spatial heterogeneity is a feasible structural indicator for portraying mechanical properties of metallic glasses.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N39c28ab0d3c2433db214da7bc2518557
23 N545766e612ad4e168c090e9f55aeae70
24 sg:journal.1043282
25 schema:keywords Taylor
26 Young's modulus
27 atoms
28 behavior
29 boundaries
30 boundary strengthening
31 characteristic length
32 compelling evidence
33 correlation
34 crystal defects
35 crystalline materials
36 defects
37 deformation behavior
38 dislocations
39 evidence
40 exponent
41 features
42 function
43 glass
44 grain boundaries
45 grain boundary strengthening
46 heterogeneity
47 indicators
48 inherent structural features
49 intrinsic correlation
50 length
51 materials
52 mechanical properties
53 metallic glasses
54 model
55 modulus
56 nanoscale spatial heterogeneity
57 properties
58 relationship
59 relaxation
60 roots
61 solid solution strengthening
62 solute atoms
63 solution strengthening
64 spatial heterogeneity
65 square root
66 strain relaxation
67 strength
68 strengthening
69 structural features
70 structural indicators
71 structure features
72 structure-property relationships
73 study
74 twins
75 schema:name Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses
76 schema:pagination 3965
77 schema:productId N9b59be6ae52c42ba95678a0ad0b0c570
78 Na25421741862494084ccae6987f61224
79 Nb318a3c39883419e9a3d8c2b5eba41c1
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107189137
81 https://doi.org/10.1038/s41467-018-06476-8
82 schema:sdDatePublished 2022-09-02T16:02
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nf41934c727fc4f5ea6e7709b541b7447
85 schema:url https://doi.org/10.1038/s41467-018-06476-8
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N14cca7d234964f488a7dc510a838819d rdf:first sg:person.01111213505.34
90 rdf:rest rdf:nil
91 N2bb794cab34d4bc1809622d4f8c6e425 rdf:first sg:person.01054462015.95
92 rdf:rest N14cca7d234964f488a7dc510a838819d
93 N39c28ab0d3c2433db214da7bc2518557 schema:volumeNumber 9
94 rdf:type schema:PublicationVolume
95 N545766e612ad4e168c090e9f55aeae70 schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 N55e89b7a76af461a9aae18aa24d0388c rdf:first sg:person.010046770425.80
98 rdf:rest N56288da273754a77964c68e3f22340f3
99 N56288da273754a77964c68e3f22340f3 rdf:first sg:person.0722215311.07
100 rdf:rest N2bb794cab34d4bc1809622d4f8c6e425
101 N921209e3e7b84958b1a434dcda820ad3 rdf:first sg:person.01002677477.73
102 rdf:rest N55e89b7a76af461a9aae18aa24d0388c
103 N9b59be6ae52c42ba95678a0ad0b0c570 schema:name pubmed_id
104 schema:value 30262846
105 rdf:type schema:PropertyValue
106 Na25421741862494084ccae6987f61224 schema:name doi
107 schema:value 10.1038/s41467-018-06476-8
108 rdf:type schema:PropertyValue
109 Nb318a3c39883419e9a3d8c2b5eba41c1 schema:name dimensions_id
110 schema:value pub.1107189137
111 rdf:type schema:PropertyValue
112 Nf41934c727fc4f5ea6e7709b541b7447 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.6819639 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06476-8
121 rdf:type schema:MonetaryGrant
122 sg:grant.8115752 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06476-8
123 rdf:type schema:MonetaryGrant
124 sg:grant.8130872 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06476-8
125 rdf:type schema:MonetaryGrant
126 sg:journal.1043282 schema:issn 2041-1723
127 schema:name Nature Communications
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01002677477.73 schema:affiliation grid-institutes:grid.16821.3c
131 schema:familyName Zhu
132 schema:givenName Fan
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73
134 rdf:type schema:Person
135 sg:person.010046770425.80 schema:affiliation grid-institutes:grid.16821.3c
136 schema:familyName Song
137 schema:givenName Shuangxi
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046770425.80
139 rdf:type schema:Person
140 sg:person.01054462015.95 schema:affiliation grid-institutes:grid.69566.3a
141 schema:familyName Hirata
142 schema:givenName Akihiko
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95
144 rdf:type schema:Person
145 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.21107.35
146 schema:familyName Chen
147 schema:givenName Mingwei
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
149 rdf:type schema:Person
150 sg:person.0722215311.07 schema:affiliation grid-institutes:grid.16821.3c
151 schema:familyName Reddy
152 schema:givenName Kolan Madhav
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722215311.07
154 rdf:type schema:Person
155 sg:pub.10.1038/nature14674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001816
156 https://doi.org/10.1038/nature14674
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ncomms11516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049615186
159 https://doi.org/10.1038/ncomms11516
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms13733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038406884
162 https://doi.org/10.1038/ncomms13733
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ncomms4204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038668432
165 https://doi.org/10.1038/ncomms4204
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/ncomms6823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017749130
168 https://doi.org/10.1038/ncomms6823
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ncomms9310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040854939
171 https://doi.org/10.1038/ncomms9310
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmat2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034149236
174 https://doi.org/10.1038/nmat2802
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmat2897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008328312
177 https://doi.org/10.1038/nmat2897
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nmat3024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007316134
180 https://doi.org/10.1038/nmat3024
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nmat4300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042683802
183 https://doi.org/10.1038/nmat4300
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/s41467-018-03604-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101558945
186 https://doi.org/10.1038/s41467-018-03604-2
187 rdf:type schema:CreativeWork
188 sg:pub.10.1557/jmr.1992.1564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043643805
189 https://doi.org/10.1557/jmr.1992.1564
190 rdf:type schema:CreativeWork
191 sg:pub.10.1557/jmr.2004.19.1.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491812
192 https://doi.org/10.1557/jmr.2004.19.1.46
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.16821.3c schema:alternateName State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
195 schema:name State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
196 rdf:type schema:Organization
197 grid-institutes:grid.21107.35 schema:alternateName Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA
198 schema:name Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA
199 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
200 rdf:type schema:Organization
201 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
202 schema:name WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...