Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-27

AUTHORS

Fan Zhu, Shuangxi Song, Kolan Madhav Reddy, Akihiko Hirata, Mingwei Chen

ABSTRACT

The mechanical properties of crystalline materials can be quantitatively described by crystal defects of solute atoms, dislocations, twins, and grain boundaries with the models of solid solution strengthening, Taylor strain hardening and Hall–Petch grain boundary strengthening. However, for metallic glasses, a well-defined structure feature which dominates the mechanical properties of the disordered materials is still missing. Here, we report that nanoscale spatial heterogeneity is the inherent structural feature of metallic glasses. It has an intrinsic correlation with the strength and deformation behavior. The strength and Young’s modulus of metallic glasses can be defined by the function of the square root reciprocal of the characteristic length of the spatial heterogeneity. Moreover, the stretching exponent of time-dependent strain relaxation can be quantitatively described by the characteristic length. Our study provides compelling evidence that the spatial heterogeneity is a feasible structural indicator for portraying mechanical properties of metallic glasses. More... »

PAGES

3965

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8

DOI

http://dx.doi.org/10.1038/s41467-018-06476-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107189137

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30262846


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Fan", 
        "id": "sg:person.01002677477.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Shuangxi", 
        "id": "sg:person.010046770425.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046770425.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reddy", 
        "givenName": "Kolan Madhav", 
        "id": "sg:person.0722215311.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722215311.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Akihiko", 
        "id": "sg:person.01054462015.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms11516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049615186", 
          "https://doi.org/10.1038/ncomms11516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014001816", 
          "https://doi.org/10.1038/nature14674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038406884", 
          "https://doi.org/10.1038/ncomms13733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008328312", 
          "https://doi.org/10.1038/nmat2897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040854939", 
          "https://doi.org/10.1038/ncomms9310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.1992.1564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043643805", 
          "https://doi.org/10.1557/jmr.1992.1564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2004.19.1.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043491812", 
          "https://doi.org/10.1557/jmr.2004.19.1.46"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034149236", 
          "https://doi.org/10.1038/nmat2802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017749130", 
          "https://doi.org/10.1038/ncomms6823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007316134", 
          "https://doi.org/10.1038/nmat3024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038668432", 
          "https://doi.org/10.1038/ncomms4204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042683802", 
          "https://doi.org/10.1038/nmat4300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-018-03604-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101558945", 
          "https://doi.org/10.1038/s41467-018-03604-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-27", 
    "datePublishedReg": "2018-09-27", 
    "description": "The mechanical properties of crystalline materials can be quantitatively described by crystal defects of solute atoms, dislocations, twins, and grain boundaries with the models of solid solution strengthening, Taylor strain hardening and Hall\u2013Petch grain boundary strengthening. However, for metallic glasses, a well-defined structure feature which dominates the mechanical properties of the\u00a0disordered materials is still missing. Here, we report that nanoscale spatial heterogeneity is the inherent structural feature of metallic glasses. It has an intrinsic correlation with the strength and deformation behavior. The strength and Young\u2019s modulus of metallic glasses can be defined by the function of the square root reciprocal of the characteristic length of the spatial heterogeneity. Moreover, the stretching exponent of time-dependent strain relaxation can be quantitatively described by the characteristic length. Our study provides compelling evidence that the spatial heterogeneity is a feasible structural indicator for portraying mechanical properties of metallic glasses.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-06476-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8130872", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6819639", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8115752", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "mechanical properties", 
      "metallic glasses", 
      "grain boundary strengthening", 
      "solid solution strengthening", 
      "characteristic length", 
      "boundary strengthening", 
      "solution strengthening", 
      "deformation behavior", 
      "grain boundaries", 
      "Young's modulus", 
      "strain relaxation", 
      "structure-property relationships", 
      "solute atoms", 
      "structure features", 
      "nanoscale spatial heterogeneity", 
      "crystal defects", 
      "crystalline materials", 
      "modulus", 
      "glass", 
      "strength", 
      "properties", 
      "materials", 
      "strengthening", 
      "square root", 
      "inherent structural features", 
      "spatial heterogeneity", 
      "dislocations", 
      "intrinsic correlation", 
      "boundaries", 
      "length", 
      "behavior", 
      "features", 
      "structural features", 
      "defects", 
      "exponent", 
      "model", 
      "relaxation", 
      "structural indicators", 
      "twins", 
      "Taylor", 
      "atoms", 
      "function", 
      "heterogeneity", 
      "study", 
      "correlation", 
      "indicators", 
      "roots", 
      "relationship", 
      "compelling evidence", 
      "evidence"
    ], 
    "name": "Spatial heterogeneity as the structure feature for structure\u2013property relationship of metallic glasses", 
    "pagination": "3965", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107189137"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-06476-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30262846"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-06476-8", 
      "https://app.dimensions.ai/details/publication/pub.1107189137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_788.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-06476-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-06476-8'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      88 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-06476-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N9e2adbacf87c46b48eb32d0dad27f0e8
4 schema:citation sg:pub.10.1038/nature14674
5 sg:pub.10.1038/ncomms11516
6 sg:pub.10.1038/ncomms13733
7 sg:pub.10.1038/ncomms4204
8 sg:pub.10.1038/ncomms6823
9 sg:pub.10.1038/ncomms9310
10 sg:pub.10.1038/nmat2802
11 sg:pub.10.1038/nmat2897
12 sg:pub.10.1038/nmat3024
13 sg:pub.10.1038/nmat4300
14 sg:pub.10.1038/s41467-018-03604-2
15 sg:pub.10.1557/jmr.1992.1564
16 sg:pub.10.1557/jmr.2004.19.1.46
17 schema:datePublished 2018-09-27
18 schema:datePublishedReg 2018-09-27
19 schema:description The mechanical properties of crystalline materials can be quantitatively described by crystal defects of solute atoms, dislocations, twins, and grain boundaries with the models of solid solution strengthening, Taylor strain hardening and Hall–Petch grain boundary strengthening. However, for metallic glasses, a well-defined structure feature which dominates the mechanical properties of the disordered materials is still missing. Here, we report that nanoscale spatial heterogeneity is the inherent structural feature of metallic glasses. It has an intrinsic correlation with the strength and deformation behavior. The strength and Young’s modulus of metallic glasses can be defined by the function of the square root reciprocal of the characteristic length of the spatial heterogeneity. Moreover, the stretching exponent of time-dependent strain relaxation can be quantitatively described by the characteristic length. Our study provides compelling evidence that the spatial heterogeneity is a feasible structural indicator for portraying mechanical properties of metallic glasses.
20 schema:genre article
21 schema:isAccessibleForFree true
22 schema:isPartOf N4fe8fc9f0d374f33b2c645460f5a7968
23 Nf5bbc522b52b4306afd278cf0c8cff69
24 sg:journal.1043282
25 schema:keywords Taylor
26 Young's modulus
27 atoms
28 behavior
29 boundaries
30 boundary strengthening
31 characteristic length
32 compelling evidence
33 correlation
34 crystal defects
35 crystalline materials
36 defects
37 deformation behavior
38 dislocations
39 evidence
40 exponent
41 features
42 function
43 glass
44 grain boundaries
45 grain boundary strengthening
46 heterogeneity
47 indicators
48 inherent structural features
49 intrinsic correlation
50 length
51 materials
52 mechanical properties
53 metallic glasses
54 model
55 modulus
56 nanoscale spatial heterogeneity
57 properties
58 relationship
59 relaxation
60 roots
61 solid solution strengthening
62 solute atoms
63 solution strengthening
64 spatial heterogeneity
65 square root
66 strain relaxation
67 strength
68 strengthening
69 structural features
70 structural indicators
71 structure features
72 structure-property relationships
73 study
74 twins
75 schema:name Spatial heterogeneity as the structure feature for structure–property relationship of metallic glasses
76 schema:pagination 3965
77 schema:productId N1b761483d4854d29a156533ed9366d7a
78 N890bae749151476c9f2ab5033d61051e
79 Neb96112adedf4818befb549db25d89c3
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107189137
81 https://doi.org/10.1038/s41467-018-06476-8
82 schema:sdDatePublished 2022-11-24T21:04
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N0906ff8b9e604363b977456943231e72
85 schema:url https://doi.org/10.1038/s41467-018-06476-8
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0906ff8b9e604363b977456943231e72 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N1081f76eef5f4c6280accd111c1f566a rdf:first sg:person.01054462015.95
92 rdf:rest Ncf94449a9fe9448f9735dcdeeaef0598
93 N1b761483d4854d29a156533ed9366d7a schema:name doi
94 schema:value 10.1038/s41467-018-06476-8
95 rdf:type schema:PropertyValue
96 N4fe8fc9f0d374f33b2c645460f5a7968 schema:volumeNumber 9
97 rdf:type schema:PublicationVolume
98 N890bae749151476c9f2ab5033d61051e schema:name dimensions_id
99 schema:value pub.1107189137
100 rdf:type schema:PropertyValue
101 N9e2adbacf87c46b48eb32d0dad27f0e8 rdf:first sg:person.01002677477.73
102 rdf:rest Nea3f45ed12a3450db0fe4a24f1b498e0
103 Ncf94449a9fe9448f9735dcdeeaef0598 rdf:first sg:person.01111213505.34
104 rdf:rest rdf:nil
105 Nea3f45ed12a3450db0fe4a24f1b498e0 rdf:first sg:person.010046770425.80
106 rdf:rest Nf1aa797f341f46929381814f5d7cc215
107 Neb96112adedf4818befb549db25d89c3 schema:name pubmed_id
108 schema:value 30262846
109 rdf:type schema:PropertyValue
110 Nf1aa797f341f46929381814f5d7cc215 rdf:first sg:person.0722215311.07
111 rdf:rest N1081f76eef5f4c6280accd111c1f566a
112 Nf5bbc522b52b4306afd278cf0c8cff69 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:grant.6819639 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06476-8
121 rdf:type schema:MonetaryGrant
122 sg:grant.8115752 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06476-8
123 rdf:type schema:MonetaryGrant
124 sg:grant.8130872 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-06476-8
125 rdf:type schema:MonetaryGrant
126 sg:journal.1043282 schema:issn 2041-1723
127 schema:name Nature Communications
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.01002677477.73 schema:affiliation grid-institutes:grid.16821.3c
131 schema:familyName Zhu
132 schema:givenName Fan
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73
134 rdf:type schema:Person
135 sg:person.010046770425.80 schema:affiliation grid-institutes:grid.16821.3c
136 schema:familyName Song
137 schema:givenName Shuangxi
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010046770425.80
139 rdf:type schema:Person
140 sg:person.01054462015.95 schema:affiliation grid-institutes:grid.69566.3a
141 schema:familyName Hirata
142 schema:givenName Akihiko
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95
144 rdf:type schema:Person
145 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.21107.35
146 schema:familyName Chen
147 schema:givenName Mingwei
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
149 rdf:type schema:Person
150 sg:person.0722215311.07 schema:affiliation grid-institutes:grid.16821.3c
151 schema:familyName Reddy
152 schema:givenName Kolan Madhav
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722215311.07
154 rdf:type schema:Person
155 sg:pub.10.1038/nature14674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014001816
156 https://doi.org/10.1038/nature14674
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ncomms11516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049615186
159 https://doi.org/10.1038/ncomms11516
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms13733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038406884
162 https://doi.org/10.1038/ncomms13733
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ncomms4204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038668432
165 https://doi.org/10.1038/ncomms4204
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/ncomms6823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017749130
168 https://doi.org/10.1038/ncomms6823
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ncomms9310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040854939
171 https://doi.org/10.1038/ncomms9310
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmat2802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034149236
174 https://doi.org/10.1038/nmat2802
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nmat2897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008328312
177 https://doi.org/10.1038/nmat2897
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nmat3024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007316134
180 https://doi.org/10.1038/nmat3024
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nmat4300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042683802
183 https://doi.org/10.1038/nmat4300
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/s41467-018-03604-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101558945
186 https://doi.org/10.1038/s41467-018-03604-2
187 rdf:type schema:CreativeWork
188 sg:pub.10.1557/jmr.1992.1564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043643805
189 https://doi.org/10.1557/jmr.1992.1564
190 rdf:type schema:CreativeWork
191 sg:pub.10.1557/jmr.2004.19.1.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043491812
192 https://doi.org/10.1557/jmr.2004.19.1.46
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.16821.3c schema:alternateName State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
195 schema:name State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
196 rdf:type schema:Organization
197 grid-institutes:grid.21107.35 schema:alternateName Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA
198 schema:name Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA
199 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
200 rdf:type schema:Organization
201 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
202 schema:name WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...