Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Shuaihua Lu, Qionghua Zhou, Yixin Ouyang, Yilv Guo, Qiang Li, Jinlan Wang

ABSTRACT

Rapidly discovering functional materials remains an open challenge because the traditional trial-and-error methods are usually inefficient especially when thousands of candidates are treated. Here, we develop a target-driven method to predict undiscovered hybrid organic-inorganic perovskites (HOIPs) for photovoltaics. This strategy, combining machine learning techniques and density functional theory calculations, aims to quickly screen the HOIPs based on bandgap and solve the problems of toxicity and poor environmental stability in HOIPs. Successfully, six orthorhombic lead-free HOIPs with proper bandgap for solar cells and room temperature thermal stability are screened out from 5158 unexplored HOIPs and two of them stand out with direct bandgaps in the visible region and excellent environmental stability. Essentially, a close structure-property relationship mapping the HOIPs bandgap is established. Our method can achieve high accuracy in a flash and be applicable to a broad class of functional material design. More... »

PAGES

3405

References to SciGraph publications

  • 2013-03. The high-throughput highway to computational materials design in NATURE MATERIALS
  • 2017-07-04. Understanding the physical properties of hybrid perovskites for photovoltaic applications in NATURE REVIEWS MATERIALS
  • 2015-12. Ambipolar solution-processed hybrid perovskite phototransistors in NATURE COMMUNICATIONS
  • 2016-10. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach in NATURE MATERIALS
  • 2016-05. Machine learning bandgaps of double perovskites in SCIENTIFIC REPORTS
  • 2017-03. Chemically diverse and multifunctional hybrid organic–inorganic perovskites in NATURE REVIEWS MATERIALS
  • 2018-05. Accelerating the discovery of materials for clean energy in the era of smart automation in NATURE REVIEWS MATERIALS
  • 2016-11. Defects in perovskite-halides and their effects in solar cells in NATURE ENERGY
  • 2018-03. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds in NATURE NANOTECHNOLOGY
  • 2017-06-05. Universal fragment descriptors for predicting properties of inorganic crystals in NATURE COMMUNICATIONS
  • 2017-05. Progress on lead-free metal halide perovskites for photovoltaic applications: a review in MONATSHEFTE FÜR CHEMIE - CHEMICAL MONTHLY
  • 2017-05-09. A hybrid organic-inorganic perovskite dataset in SCIENTIFIC DATA
  • 2016-04-15. Accelerated search for materials with targeted properties by adaptive design in NATURE COMMUNICATIONS
  • 2018-12. Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning in NATURE COMMUNICATIONS
  • 2015-12. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-018-05761-w

    DOI

    http://dx.doi.org/10.1038/s41467-018-05761-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106257059

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30143621


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Shuaihua", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Qionghua", 
            "id": "sg:person.01364616700.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364616700.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ouyang", 
            "givenName": "Yixin", 
            "id": "sg:person.011231601305.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231601305.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Yilv", 
            "id": "sg:person.015241645312.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015241645312.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Qiang", 
            "id": "sg:person.01250635754.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250635754.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jinlan", 
            "id": "sg:person.01066252541.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066252541.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms8026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000360596", 
              "https://doi.org/10.1038/ncomms8026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007720867", 
              "https://doi.org/10.1038/nmat4717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007873778", 
              "https://doi.org/10.1038/srep19375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0927-0256(96)00008-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008708156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-9473(01)00065-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012543995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.081101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012633591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.081101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012633591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012805029", 
              "https://doi.org/10.1038/ncomms11241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5sc00961h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013394639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm402919x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020919543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024247269", 
              "https://doi.org/10.1038/nmat3568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja809598r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025956825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja809598r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025956825"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5sc04845a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028109298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aos/1013203451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030645893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201605071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031118390"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034645494", 
              "https://doi.org/10.1038/ncomms9238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4ee01076k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037096739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemrev.5b00165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042410798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nenergy.2016.149", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043109203", 
              "https://doi.org/10.1038/nenergy.2016.149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b04594", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051695907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr200066h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053858270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemrev.5b00691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055085234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm100795d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055413683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm100795d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055413683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl5043769", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056221126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1736034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057802052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.447334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058025354"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.31.1695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060473124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.31.1695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060473124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.6b09645", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079398804"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201605005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083531010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083695118", 
              "https://doi.org/10.1038/natrevmats.2016.99"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6dt04796c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083829064"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/aenm.201602400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084007578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00706-017-1933-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084023158", 
              "https://doi.org/10.1007/s00706-017-1933-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00706-017-1933-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084023158", 
              "https://doi.org/10.1007/s00706-017-1933-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsenergylett.7b00035", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084125032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sdata.2017.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085218893", 
              "https://doi.org/10.1038/sdata.2017.57"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.144110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085232143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.144110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085232143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.chemmater.7b00156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085510466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.7b04219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085616946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15679", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085861798", 
              "https://doi.org/10.1038/ncomms15679"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2017.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090336474", 
              "https://doi.org/10.1038/natrevmats.2017.42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aan2301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090389042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpclett.7b02203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091865126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7ta01812f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091915086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7ee02702h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092814706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.7b11332", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100168644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201702884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100241802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41565-017-0035-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100836727", 
              "https://doi.org/10.1038/s41565-017-0035-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpclett.8b00170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100940861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201705901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101351041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.jpclett.8b00124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101560844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-03821-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103565760", 
              "https://doi.org/10.1038/s41467-018-03821-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41578-018-0005-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103656451", 
              "https://doi.org/10.1038/s41578-018-0005-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Rapidly discovering functional materials remains an open challenge because the traditional trial-and-error methods are usually inefficient especially when thousands of candidates are treated. Here, we develop a target-driven method to predict undiscovered hybrid organic-inorganic perovskites (HOIPs) for photovoltaics. This strategy, combining machine learning techniques and density functional theory calculations, aims to quickly screen the HOIPs based on bandgap and solve the problems of toxicity and poor environmental stability in HOIPs. Successfully, six orthorhombic lead-free HOIPs with proper bandgap for solar cells and room temperature thermal stability are screened out from 5158 unexplored HOIPs and two of them stand out with direct bandgaps in the visible region and excellent environmental stability. Essentially, a close structure-property relationship mapping the HOIPs bandgap is established. Our method can achieve high accuracy in a flash and be applicable to a broad class of functional material design.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-018-05761-w", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning", 
        "pagination": "3405", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "346b3d447af085d4fa57a1a15a4d28450ea3da0354af0287caeeef2fd3dbadfb"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30143621"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-018-05761-w"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106257059"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-018-05761-w", 
          "https://app.dimensions.ai/details/publication/pub.1106257059"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-018-05761-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05761-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05761-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05761-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05761-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    273 TRIPLES      21 PREDICATES      81 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-018-05761-w schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 schema:author Nd9a3caad83b7452096ab254b006cfccd
    4 schema:citation sg:pub.10.1007/s00706-017-1933-9
    5 sg:pub.10.1038/natrevmats.2016.99
    6 sg:pub.10.1038/natrevmats.2017.42
    7 sg:pub.10.1038/ncomms11241
    8 sg:pub.10.1038/ncomms15679
    9 sg:pub.10.1038/ncomms8026
    10 sg:pub.10.1038/ncomms9238
    11 sg:pub.10.1038/nenergy.2016.149
    12 sg:pub.10.1038/nmat3568
    13 sg:pub.10.1038/nmat4717
    14 sg:pub.10.1038/s41467-018-03821-9
    15 sg:pub.10.1038/s41565-017-0035-5
    16 sg:pub.10.1038/s41578-018-0005-z
    17 sg:pub.10.1038/sdata.2017.57
    18 sg:pub.10.1038/srep19375
    19 https://doi.org/10.1002/adma.201605005
    20 https://doi.org/10.1002/adma.201605071
    21 https://doi.org/10.1002/adma.201702884
    22 https://doi.org/10.1002/adma.201705901
    23 https://doi.org/10.1002/aenm.201602400
    24 https://doi.org/10.1016/0927-0256(96)00008-0
    25 https://doi.org/10.1016/s0167-9473(01)00065-2
    26 https://doi.org/10.1021/acs.chemmater.7b00156
    27 https://doi.org/10.1021/acs.chemrev.5b00165
    28 https://doi.org/10.1021/acs.chemrev.5b00691
    29 https://doi.org/10.1021/acs.jpclett.7b02203
    30 https://doi.org/10.1021/acs.jpclett.8b00124
    31 https://doi.org/10.1021/acs.jpclett.8b00170
    32 https://doi.org/10.1021/acs.nanolett.5b04594
    33 https://doi.org/10.1021/acsenergylett.7b00035
    34 https://doi.org/10.1021/cm100795d
    35 https://doi.org/10.1021/cm402919x
    36 https://doi.org/10.1021/cr200066h
    37 https://doi.org/10.1021/ja809598r
    38 https://doi.org/10.1021/jacs.6b09645
    39 https://doi.org/10.1021/jacs.7b04219
    40 https://doi.org/10.1021/jacs.7b11332
    41 https://doi.org/10.1021/nl5043769
    42 https://doi.org/10.1039/c4ee01076k
    43 https://doi.org/10.1039/c5sc00961h
    44 https://doi.org/10.1039/c5sc04845a
    45 https://doi.org/10.1039/c6dt04796c
    46 https://doi.org/10.1039/c7ee02702h
    47 https://doi.org/10.1039/c7ta01812f
    48 https://doi.org/10.1063/1.1736034
    49 https://doi.org/10.1063/1.447334
    50 https://doi.org/10.1103/physreva.31.1695
    51 https://doi.org/10.1103/physrevb.82.081101
    52 https://doi.org/10.1103/physrevb.95.144110
    53 https://doi.org/10.1103/physrevlett.77.3865
    54 https://doi.org/10.1126/science.aan2301
    55 https://doi.org/10.1214/aos/1013203451
    56 schema:datePublished 2018-12
    57 schema:datePublishedReg 2018-12-01
    58 schema:description Rapidly discovering functional materials remains an open challenge because the traditional trial-and-error methods are usually inefficient especially when thousands of candidates are treated. Here, we develop a target-driven method to predict undiscovered hybrid organic-inorganic perovskites (HOIPs) for photovoltaics. This strategy, combining machine learning techniques and density functional theory calculations, aims to quickly screen the HOIPs based on bandgap and solve the problems of toxicity and poor environmental stability in HOIPs. Successfully, six orthorhombic lead-free HOIPs with proper bandgap for solar cells and room temperature thermal stability are screened out from 5158 unexplored HOIPs and two of them stand out with direct bandgaps in the visible region and excellent environmental stability. Essentially, a close structure-property relationship mapping the HOIPs bandgap is established. Our method can achieve high accuracy in a flash and be applicable to a broad class of functional material design.
    59 schema:genre research_article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree true
    62 schema:isPartOf N71fbec3096754fd483ad14437d87c1e3
    63 Na16453db47aa4c5a965209dd60560d54
    64 sg:journal.1043282
    65 schema:name Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
    66 schema:pagination 3405
    67 schema:productId N411f96caab724ee88fafda28566956e8
    68 N43cbe2c58cc04fef851d08a7c9a4c81a
    69 N58d998b2983e44d68ac798b1a530da3c
    70 N89720d2a7d794593b1df95b1fd8e3a96
    71 Nd06a9b014c594dca9eef7bff9e74b7e1
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106257059
    73 https://doi.org/10.1038/s41467-018-05761-w
    74 schema:sdDatePublished 2019-04-10T18:28
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Na627cd3fd4a94d25b013456aed2ed84f
    77 schema:url https://www.nature.com/articles/s41467-018-05761-w
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N059243210d764b43bde6ba0a3476255e rdf:first sg:person.01250635754.26
    82 rdf:rest Nf0ea8f7dedd3444a859a42f037980a7d
    83 N1cd9fe59ce334d058e8c9b1714a8f16d rdf:first sg:person.01364616700.32
    84 rdf:rest Nd09d9626bae8458bac39d5ab280d9ceb
    85 N2eaedabe7aa642ddb3df33fb01374a03 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    86 schema:familyName Lu
    87 schema:givenName Shuaihua
    88 rdf:type schema:Person
    89 N411f96caab724ee88fafda28566956e8 schema:name doi
    90 schema:value 10.1038/s41467-018-05761-w
    91 rdf:type schema:PropertyValue
    92 N43cbe2c58cc04fef851d08a7c9a4c81a schema:name nlm_unique_id
    93 schema:value 101528555
    94 rdf:type schema:PropertyValue
    95 N58d998b2983e44d68ac798b1a530da3c schema:name readcube_id
    96 schema:value 346b3d447af085d4fa57a1a15a4d28450ea3da0354af0287caeeef2fd3dbadfb
    97 rdf:type schema:PropertyValue
    98 N71fbec3096754fd483ad14437d87c1e3 schema:issueNumber 1
    99 rdf:type schema:PublicationIssue
    100 N89720d2a7d794593b1df95b1fd8e3a96 schema:name pubmed_id
    101 schema:value 30143621
    102 rdf:type schema:PropertyValue
    103 Na16453db47aa4c5a965209dd60560d54 schema:volumeNumber 9
    104 rdf:type schema:PublicationVolume
    105 Na627cd3fd4a94d25b013456aed2ed84f schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Nd06a9b014c594dca9eef7bff9e74b7e1 schema:name dimensions_id
    108 schema:value pub.1106257059
    109 rdf:type schema:PropertyValue
    110 Nd09d9626bae8458bac39d5ab280d9ceb rdf:first sg:person.011231601305.62
    111 rdf:rest Nfd3df2fef97949b2bd53b8fd500e864e
    112 Nd9a3caad83b7452096ab254b006cfccd rdf:first N2eaedabe7aa642ddb3df33fb01374a03
    113 rdf:rest N1cd9fe59ce334d058e8c9b1714a8f16d
    114 Nf0ea8f7dedd3444a859a42f037980a7d rdf:first sg:person.01066252541.00
    115 rdf:rest rdf:nil
    116 Nfd3df2fef97949b2bd53b8fd500e864e rdf:first sg:person.015241645312.30
    117 rdf:rest N059243210d764b43bde6ba0a3476255e
    118 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Chemical Sciences
    120 rdf:type schema:DefinedTerm
    121 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Macromolecular and Materials Chemistry
    123 rdf:type schema:DefinedTerm
    124 sg:journal.1043282 schema:issn 2041-1723
    125 schema:name Nature Communications
    126 rdf:type schema:Periodical
    127 sg:person.01066252541.00 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    128 schema:familyName Wang
    129 schema:givenName Jinlan
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066252541.00
    131 rdf:type schema:Person
    132 sg:person.011231601305.62 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    133 schema:familyName Ouyang
    134 schema:givenName Yixin
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231601305.62
    136 rdf:type schema:Person
    137 sg:person.01250635754.26 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    138 schema:familyName Li
    139 schema:givenName Qiang
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250635754.26
    141 rdf:type schema:Person
    142 sg:person.01364616700.32 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    143 schema:familyName Zhou
    144 schema:givenName Qionghua
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364616700.32
    146 rdf:type schema:Person
    147 sg:person.015241645312.30 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    148 schema:familyName Guo
    149 schema:givenName Yilv
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015241645312.30
    151 rdf:type schema:Person
    152 sg:pub.10.1007/s00706-017-1933-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084023158
    153 https://doi.org/10.1007/s00706-017-1933-9
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/natrevmats.2016.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083695118
    156 https://doi.org/10.1038/natrevmats.2016.99
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/natrevmats.2017.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090336474
    159 https://doi.org/10.1038/natrevmats.2017.42
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/ncomms11241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012805029
    162 https://doi.org/10.1038/ncomms11241
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/ncomms15679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085861798
    165 https://doi.org/10.1038/ncomms15679
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/ncomms8026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000360596
    168 https://doi.org/10.1038/ncomms8026
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/ncomms9238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034645494
    171 https://doi.org/10.1038/ncomms9238
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nenergy.2016.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043109203
    174 https://doi.org/10.1038/nenergy.2016.149
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nmat3568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024247269
    177 https://doi.org/10.1038/nmat3568
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nmat4717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007720867
    180 https://doi.org/10.1038/nmat4717
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/s41467-018-03821-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103565760
    183 https://doi.org/10.1038/s41467-018-03821-9
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/s41565-017-0035-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100836727
    186 https://doi.org/10.1038/s41565-017-0035-5
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/s41578-018-0005-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103656451
    189 https://doi.org/10.1038/s41578-018-0005-z
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/sdata.2017.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085218893
    192 https://doi.org/10.1038/sdata.2017.57
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/srep19375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007873778
    195 https://doi.org/10.1038/srep19375
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1002/adma.201605005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083531010
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1002/adma.201605071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031118390
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1002/adma.201702884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100241802
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1002/adma.201705901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101351041
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1002/aenm.201602400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084007578
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/0927-0256(96)00008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008708156
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/s0167-9473(01)00065-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543995
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1021/acs.chemmater.7b00156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085510466
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1021/acs.chemrev.5b00165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042410798
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1021/acs.chemrev.5b00691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055085234
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1021/acs.jpclett.7b02203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091865126
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1021/acs.jpclett.8b00124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101560844
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1021/acs.jpclett.8b00170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100940861
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1021/acs.nanolett.5b04594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051695907
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1021/acsenergylett.7b00035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084125032
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1021/cm100795d schema:sameAs https://app.dimensions.ai/details/publication/pub.1055413683
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1021/cm402919x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020919543
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1021/cr200066h schema:sameAs https://app.dimensions.ai/details/publication/pub.1053858270
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1021/ja809598r schema:sameAs https://app.dimensions.ai/details/publication/pub.1025956825
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1021/jacs.6b09645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079398804
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1021/jacs.7b04219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085616946
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1021/jacs.7b11332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100168644
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1021/nl5043769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221126
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1039/c4ee01076k schema:sameAs https://app.dimensions.ai/details/publication/pub.1037096739
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1039/c5sc00961h schema:sameAs https://app.dimensions.ai/details/publication/pub.1013394639
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1039/c5sc04845a schema:sameAs https://app.dimensions.ai/details/publication/pub.1028109298
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1039/c6dt04796c schema:sameAs https://app.dimensions.ai/details/publication/pub.1083829064
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1039/c7ee02702h schema:sameAs https://app.dimensions.ai/details/publication/pub.1092814706
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1039/c7ta01812f schema:sameAs https://app.dimensions.ai/details/publication/pub.1091915086
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1063/1.1736034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057802052
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1063/1.447334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058025354
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1103/physreva.31.1695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473124
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1103/physrevb.82.081101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012633591
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1103/physrevb.95.144110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085232143
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1126/science.aan2301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090389042
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1214/aos/1013203451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030645893
    270 rdf:type schema:CreativeWork
    271 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
    272 schema:name School of Physics, Southeast University, 211189, Nanjing, China
    273 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...