Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Shao-Yu Chen, Thomas Goldstein, Takashi Taniguchi, Kenji Watanabe, Jun Yan

ABSTRACT

As hosts for tightly-bound electron-hole pairs carrying quantized angular momentum, atomically-thin semiconductors of transition metal dichalcogenides (TMDCs) provide an appealing platform for optically addressing the valley degree of freedom. In particular, the valleytronic properties of neutral and charged excitons in these systems have been widely investigated. Meanwhile, correlated quantum states involving more particles are still elusive and controversial despite recent efforts. Here, we present experimental evidence for four-particle biexcitons and five-particle exciton-trions in high-quality monolayer tungsten diselenide. Through charge doping, thermal activation, and magnetic-field tuning measurements, we determine that the biexciton and the exciton-trion are bound with respect to the bright exciton and the trion, respectively. Further, both the biexciton and the exciton-trion are intervalley complexes involving dark excitons, giving rise to emissions with large, negative valley polarization in contrast to that of the two-particle excitons. Our studies provide opportunities for building valleytronic quantum devices harnessing high-order TMDC excitations. More... »

PAGES

3717

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-05558-x

DOI

http://dx.doi.org/10.1038/s41467-018-05558-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106858932

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30214001


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Amherst", 
          "id": "https://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Physics, University of Massachusetts, 01003, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Shao-Yu", 
        "id": "sg:person.01134640417.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134640417.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Amherst", 
          "id": "https://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Physics, University of Massachusetts, 01003, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goldstein", 
        "givenName": "Thomas", 
        "id": "sg:person.015305203141.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305203141.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute of Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute of Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010026307551.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Massachusetts Amherst", 
          "id": "https://www.grid.ac/institutes/grid.266683.f", 
          "name": [
            "Department of Physics, University of Massachusetts, 01003, Amherst, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Jun", 
        "id": "sg:person.01240161461.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240161461.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/11/39/320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001644724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001903377", 
          "https://doi.org/10.1038/nphys3604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1583/aa5521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003303304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003857275", 
          "https://doi.org/10.1038/nnano.2013.151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004672159", 
          "https://doi.org/10.1038/nphys3201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018699053", 
          "https://doi.org/10.1038/nphys2942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023716123", 
          "https://doi.org/10.1038/nphys3203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026351770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026351770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952436", 
          "https://doi.org/10.1038/nnano.2012.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.085433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028601473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.085433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028601473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b03009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036620642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037682572", 
          "https://doi.org/10.1038/nphys3324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b00092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039910396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040976819", 
          "https://doi.org/10.1038/nature06094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548334", 
          "https://doi.org/10.1038/ncomms1882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn5059908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051706713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053264408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0800873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0800873", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.15776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.15776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.15099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.15099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.161404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.161404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.140409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.140409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.205423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.205423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.197402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.197402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.257403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.257403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b03855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079396417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.081301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083717417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.081301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083717417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.021026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085444359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.7.021026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085444359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086182729", 
          "https://doi.org/10.1038/nnano.2017.105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086182729", 
          "https://doi.org/10.1038/nnano.2017.105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090275464", 
          "https://doi.org/10.1038/ncomms15552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b03909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090392500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.047401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090966762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.119.047401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090966762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.075431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091314886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.075431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091314886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-09739-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091951549", 
          "https://doi.org/10.1038/s41598-017-09739-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.155423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092144601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.155423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092144601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-02286-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099598223", 
          "https://doi.org/10.1038/s41467-017-02286-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.046402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100658740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.046402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100658740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.8b00840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101634545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.057402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105983633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.121.057402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105983633"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "As hosts for tightly-bound electron-hole pairs carrying quantized angular momentum, atomically-thin semiconductors of transition metal dichalcogenides (TMDCs) provide an appealing platform for optically addressing the valley degree of freedom. In particular, the valleytronic properties of neutral and charged excitons in these systems have been widely investigated. Meanwhile, correlated quantum states involving more particles are still elusive and controversial despite recent efforts. Here, we present experimental evidence for four-particle biexcitons and five-particle exciton-trions in high-quality monolayer tungsten diselenide. Through charge doping, thermal activation, and magnetic-field tuning measurements, we determine that the biexciton and the exciton-trion are bound with respect to the bright exciton and the trion, respectively. Further, both the biexciton and the exciton-trion are intervalley complexes involving dark excitons, giving rise to emissions with large, negative valley polarization in contrast to that of the two-particle excitons. Our studies provide opportunities for building valleytronic quantum devices harnessing high-order TMDC excitations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-05558-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4179599", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor", 
    "pagination": "3717", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d1ff64e905f720a09a3c769fcb0cddc78009a1ed1a99360c130ade7133164170"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30214001"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-05558-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106858932"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-05558-x", 
      "https://app.dimensions.ai/details/publication/pub.1106858932"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000567.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-05558-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05558-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05558-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05558-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05558-x'


 

This table displays all metadata directly associated to this object as RDF triples.

238 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-05558-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N4b827943bbc344b6a8230e7ff2cfc282
4 schema:citation sg:pub.10.1038/nature06094
5 sg:pub.10.1038/ncomms15552
6 sg:pub.10.1038/ncomms1882
7 sg:pub.10.1038/nnano.2012.95
8 sg:pub.10.1038/nnano.2012.96
9 sg:pub.10.1038/nnano.2013.151
10 sg:pub.10.1038/nnano.2017.105
11 sg:pub.10.1038/nphys2942
12 sg:pub.10.1038/nphys3201
13 sg:pub.10.1038/nphys3203
14 sg:pub.10.1038/nphys3324
15 sg:pub.10.1038/nphys3604
16 sg:pub.10.1038/s41467-017-02286-6
17 sg:pub.10.1038/s41598-017-09739-4
18 https://doi.org/10.1021/acs.nanolett.5b00092
19 https://doi.org/10.1021/acs.nanolett.5b03009
20 https://doi.org/10.1021/acs.nanolett.6b03855
21 https://doi.org/10.1021/acs.nanolett.8b00840
22 https://doi.org/10.1021/acsnano.7b03909
23 https://doi.org/10.1021/nl0800873
24 https://doi.org/10.1021/nn5059908
25 https://doi.org/10.1088/0953-8984/11/39/320
26 https://doi.org/10.1088/2053-1583/aa5521
27 https://doi.org/10.1103/physrevb.47.15776
28 https://doi.org/10.1103/physrevb.50.15099
29 https://doi.org/10.1103/physrevb.88.085433
30 https://doi.org/10.1103/physrevb.90.205422
31 https://doi.org/10.1103/physrevb.92.161404
32 https://doi.org/10.1103/physrevb.92.205418
33 https://doi.org/10.1103/physrevb.93.140409
34 https://doi.org/10.1103/physrevb.93.205423
35 https://doi.org/10.1103/physrevb.95.081301
36 https://doi.org/10.1103/physrevb.96.075431
37 https://doi.org/10.1103/physrevb.96.155423
38 https://doi.org/10.1103/physrevlett.108.196802
39 https://doi.org/10.1103/physrevlett.109.197402
40 https://doi.org/10.1103/physrevlett.115.257403
41 https://doi.org/10.1103/physrevlett.119.047401
42 https://doi.org/10.1103/physrevlett.120.046402
43 https://doi.org/10.1103/physrevlett.121.057402
44 https://doi.org/10.1103/physrevx.7.021026
45 schema:datePublished 2018-12
46 schema:datePublishedReg 2018-12-01
47 schema:description As hosts for tightly-bound electron-hole pairs carrying quantized angular momentum, atomically-thin semiconductors of transition metal dichalcogenides (TMDCs) provide an appealing platform for optically addressing the valley degree of freedom. In particular, the valleytronic properties of neutral and charged excitons in these systems have been widely investigated. Meanwhile, correlated quantum states involving more particles are still elusive and controversial despite recent efforts. Here, we present experimental evidence for four-particle biexcitons and five-particle exciton-trions in high-quality monolayer tungsten diselenide. Through charge doping, thermal activation, and magnetic-field tuning measurements, we determine that the biexciton and the exciton-trion are bound with respect to the bright exciton and the trion, respectively. Further, both the biexciton and the exciton-trion are intervalley complexes involving dark excitons, giving rise to emissions with large, negative valley polarization in contrast to that of the two-particle excitons. Our studies provide opportunities for building valleytronic quantum devices harnessing high-order TMDC excitations.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree true
51 schema:isPartOf N0f65e7e2a36041b6a1528202e0cf8284
52 N8c66adf553084cef8f4739fcb0068018
53 sg:journal.1043282
54 schema:name Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor
55 schema:pagination 3717
56 schema:productId N01641070e9c643af9dd0acee6855de50
57 N589054cfcb9d4d17b4018728961a3b74
58 Na516a97802e645549c2590eebb42495c
59 Nb8fa390dff41412fa62d88d3b1658efb
60 Nc4cba537cb0444fdabcf9e5391bc6009
61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106858932
62 https://doi.org/10.1038/s41467-018-05558-x
63 schema:sdDatePublished 2019-04-10T20:06
64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
65 schema:sdPublisher Nd450b05fa4d74d3ab16bf46205f3c938
66 schema:url https://www.nature.com/articles/s41467-018-05558-x
67 sgo:license sg:explorer/license/
68 sgo:sdDataset articles
69 rdf:type schema:ScholarlyArticle
70 N01641070e9c643af9dd0acee6855de50 schema:name readcube_id
71 schema:value d1ff64e905f720a09a3c769fcb0cddc78009a1ed1a99360c130ade7133164170
72 rdf:type schema:PropertyValue
73 N0f65e7e2a36041b6a1528202e0cf8284 schema:volumeNumber 9
74 rdf:type schema:PublicationVolume
75 N1a5e5c63dba44b3bac5384b026cb26ff rdf:first sg:person.015305203141.50
76 rdf:rest N4751311ecd284c3d94d36a42f979c41d
77 N3416d25eea1b4294997a8cf2025540d9 rdf:first sg:person.010026307551.76
78 rdf:rest Nb057043c1c0f4d3bac7f3f97e778119b
79 N4751311ecd284c3d94d36a42f979c41d rdf:first sg:person.0765715521.02
80 rdf:rest N3416d25eea1b4294997a8cf2025540d9
81 N4b827943bbc344b6a8230e7ff2cfc282 rdf:first sg:person.01134640417.30
82 rdf:rest N1a5e5c63dba44b3bac5384b026cb26ff
83 N589054cfcb9d4d17b4018728961a3b74 schema:name doi
84 schema:value 10.1038/s41467-018-05558-x
85 rdf:type schema:PropertyValue
86 N8c66adf553084cef8f4739fcb0068018 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Na516a97802e645549c2590eebb42495c schema:name dimensions_id
89 schema:value pub.1106858932
90 rdf:type schema:PropertyValue
91 Nb057043c1c0f4d3bac7f3f97e778119b rdf:first sg:person.01240161461.94
92 rdf:rest rdf:nil
93 Nb8fa390dff41412fa62d88d3b1658efb schema:name pubmed_id
94 schema:value 30214001
95 rdf:type schema:PropertyValue
96 Nc4cba537cb0444fdabcf9e5391bc6009 schema:name nlm_unique_id
97 schema:value 101528555
98 rdf:type schema:PropertyValue
99 Nd450b05fa4d74d3ab16bf46205f3c938 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
105 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
106 rdf:type schema:DefinedTerm
107 sg:grant.4179599 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-05558-x
108 rdf:type schema:MonetaryGrant
109 sg:journal.1043282 schema:issn 2041-1723
110 schema:name Nature Communications
111 rdf:type schema:Periodical
112 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
113 schema:familyName Watanabe
114 schema:givenName Kenji
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
116 rdf:type schema:Person
117 sg:person.01134640417.30 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
118 schema:familyName Chen
119 schema:givenName Shao-Yu
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134640417.30
121 rdf:type schema:Person
122 sg:person.01240161461.94 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
123 schema:familyName Yan
124 schema:givenName Jun
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240161461.94
126 rdf:type schema:Person
127 sg:person.015305203141.50 schema:affiliation https://www.grid.ac/institutes/grid.266683.f
128 schema:familyName Goldstein
129 schema:givenName Thomas
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015305203141.50
131 rdf:type schema:Person
132 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
133 schema:familyName Taniguchi
134 schema:givenName Takashi
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
136 rdf:type schema:Person
137 sg:pub.10.1038/nature06094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040976819
138 https://doi.org/10.1038/nature06094
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/ncomms15552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090275464
141 https://doi.org/10.1038/ncomms15552
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
144 https://doi.org/10.1038/ncomms1882
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
147 https://doi.org/10.1038/nnano.2012.95
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
150 https://doi.org/10.1038/nnano.2012.96
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nnano.2013.151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003857275
153 https://doi.org/10.1038/nnano.2013.151
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nnano.2017.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086182729
156 https://doi.org/10.1038/nnano.2017.105
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nphys2942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018699053
159 https://doi.org/10.1038/nphys2942
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nphys3201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004672159
162 https://doi.org/10.1038/nphys3201
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nphys3203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023716123
165 https://doi.org/10.1038/nphys3203
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nphys3324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037682572
168 https://doi.org/10.1038/nphys3324
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nphys3604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001903377
171 https://doi.org/10.1038/nphys3604
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/s41467-017-02286-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099598223
174 https://doi.org/10.1038/s41467-017-02286-6
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s41598-017-09739-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091951549
177 https://doi.org/10.1038/s41598-017-09739-4
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/acs.nanolett.5b00092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039910396
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/acs.nanolett.5b03009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036620642
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/acs.nanolett.6b03855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079396417
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.nanolett.8b00840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101634545
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/acsnano.7b03909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090392500
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/nl0800873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217681
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/nn5059908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051706713
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1088/0953-8984/11/39/320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001644724
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/2053-1583/aa5521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003303304
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.47.15776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565543
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.50.15099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573037
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.88.085433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028601473
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.90.205422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644979
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.92.161404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647539
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.92.205418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026351770
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevb.93.140409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649741
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.93.205423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650484
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.95.081301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083717417
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.96.075431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091314886
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.96.155423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092144601
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.108.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053264408
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.109.197402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760567
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.115.257403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764679
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.119.047401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090966762
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.120.046402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100658740
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevlett.121.057402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105983633
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevx.7.021026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085444359
232 rdf:type schema:CreativeWork
233 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
234 schema:name National Institute of Materials Science, 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan
235 rdf:type schema:Organization
236 https://www.grid.ac/institutes/grid.266683.f schema:alternateName University of Massachusetts Amherst
237 schema:name Department of Physics, University of Massachusetts, 01003, Amherst, MA, USA
238 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...