Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Johannes W. Bagnoli, Christoph Ziegenhain, Aleksandar Janjic, Lucas E. Wange, Beate Vieth, Swati Parekh, Johanna Geuder, Ines Hellmann, Wolfgang Enard

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has emerged as a central genome-wide method to characterize cellular identities and processes. Consequently, improving its sensitivity, flexibility, and cost-efficiency can advance many research questions. Among the flexible plate-based methods, single-cell RNA barcoding and sequencing (SCRB-seq) is highly sensitive and efficient. Here, we systematically evaluate experimental conditions of this protocol and find that adding polyethylene glycol considerably increases sensitivity by enhancing cDNA synthesis. Furthermore, using Terra polymerase increases efficiency due to a more even cDNA amplification that requires less sequencing of libraries. We combined these and other improvements to develop a scRNA-seq library protocol we call molecular crowding SCRB-seq (mcSCRB-seq), which we show to be one of the most sensitive, efficient, and flexible scRNA-seq methods to date. More... »

PAGES

2937

References to SciGraph publications

  • 2017-04. Power analysis of single-cell RNA-sequencing experiments in NATURE METHODS
  • 2014-02. voom: precision weights unlock linear model analysis tools for RNA-seq read counts in GENOME BIOLOGY
  • 2005-10. The External RNA Controls Consortium: a progress report in NATURE METHODS
  • 2017-01-16. Massively parallel digital transcriptional profiling of single cells in NATURE COMMUNICATIONS
  • 2014-09. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium in NATURE BIOTECHNOLOGY
  • 2009-07. Agouti C57BL/6N embryonic stem cells for mouse genetic resources in NATURE METHODS
  • 2017-01. Scaling single-cell genomics from phenomenology to mechanism in NATURE
  • 2010-05. Detection of Mycoplasma in cell cultures in NATURE PROTOCOLS
  • 2014-02. Quantitative single-cell RNA-seq with unique molecular identifiers in NATURE METHODS
  • 2018-12. Quartz-Seq2: a high-throughput single-cell RNA-sequencing method that effectively uses limited sequence reads in GENOME BIOLOGY
  • 2016-12. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq in GENOME BIOLOGY
  • 2016-07. The impact of amplification on differential expression analyses by RNA-seq in SCIENTIFIC REPORTS
  • 2012-01. Optimal enzymes for amplifying sequencing libraries in NATURE METHODS
  • 2018-04-02. Integrating single-cell transcriptomic data across different conditions, technologies, and species in NATURE BIOTECHNOLOGY
  • 2013-11. Smart-seq2 for sensitive full-length transcriptome profiling in single cells in NATURE METHODS
  • 2013-09. Single-cell sequencing-based technologies will revolutionize whole-organism science in NATURE REVIEWS GENETICS
  • 2016-12. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts in GENOME BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-018-05347-6

    DOI

    http://dx.doi.org/10.1038/s41467-018-05347-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105743404

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30050112


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bagnoli", 
            "givenName": "Johannes W.", 
            "id": "sg:person.013373131514.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373131514.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Karolinska Institute", 
              "id": "https://www.grid.ac/institutes/grid.4714.6", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany", 
                "Department of Cell & Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ziegenhain", 
            "givenName": "Christoph", 
            "id": "sg:person.013414477267.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013414477267.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Janjic", 
            "givenName": "Aleksandar", 
            "id": "sg:person.0722335051.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722335051.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wange", 
            "givenName": "Lucas E.", 
            "id": "sg:person.07655762314.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07655762314.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vieth", 
            "givenName": "Beate", 
            "id": "sg:person.0772764422.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772764422.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max Planck Institute for Biology of Ageing", 
              "id": "https://www.grid.ac/institutes/grid.419502.b", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany", 
                "Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Parekh", 
            "givenName": "Swati", 
            "id": "sg:person.0742322417.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742322417.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geuder", 
            "givenName": "Johanna", 
            "id": "sg:person.014236625314.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014236625314.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hellmann", 
            "givenName": "Ines", 
            "id": "sg:person.01250452344.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250452344.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Gro\u00dfhaderner Stra\u00dfe 2, 82152, Martinsried, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Enard", 
            "givenName": "Wolfgang", 
            "id": "sg:person.01133633310.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133633310.59"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1186/s13059-016-0947-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000759088", 
              "https://doi.org/10.1186/s13059-016-0947-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004718676", 
              "https://doi.org/10.1038/nprot.2010.43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2010.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004718676", 
              "https://doi.org/10.1038/nprot.2010.43"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2639", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006291172", 
              "https://doi.org/10.1038/nmeth.2639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1005-731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010489207", 
              "https://doi.org/10.1038/nmeth1005-731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1005-731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010489207", 
              "https://doi.org/10.1038/nmeth1005-731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016098431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016146134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018119119", 
              "https://doi.org/10.1038/nmeth.1342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1342", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018119119", 
              "https://doi.org/10.1038/nmeth.1342"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibs.2016.08.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018450956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25533", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018773010", 
              "https://doi.org/10.1038/srep25533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019155899", 
              "https://doi.org/10.1038/ncomms14049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2957", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027683701", 
              "https://doi.org/10.1038/nbt.2957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.80.19.5852", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028613465"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(92)90611-f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028643561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029194837", 
              "https://doi.org/10.1038/nrg3542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029706604", 
              "https://doi.org/10.1038/nmeth.2772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032915484", 
              "https://doi.org/10.1038/nmeth.1814"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature21350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036838837", 
              "https://doi.org/10.1038/nature21350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-2-r29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045312009", 
              "https://doi.org/10.1186/gb-2014-15-2-r29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2015.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045959786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0938-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051874242", 
              "https://doi.org/10.1186/s13059-016-0938-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053365587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.molcel.2017.01.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083847222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.4220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129311", 
              "https://doi.org/10.1038/nmeth.4220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/093237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085101760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/093237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085101760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/093237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085101760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/003236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085110775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/003236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085110775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/003236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085110775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12688/f1000research.11290.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085292116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btx435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090523707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bfgp/ely001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100429973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bfgp/ely009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101332475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bfgp/ely009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101332475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1407-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101398427", 
              "https://doi.org/10.1186/s13059-018-1407-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1407-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101398427", 
              "https://doi.org/10.1186/s13059-018-1407-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1407-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101398427", 
              "https://doi.org/10.1186/s13059-018-1407-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-018-1407-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101398427", 
              "https://doi.org/10.1186/s13059-018-1407-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.4096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101885942", 
              "https://doi.org/10.1038/nbt.4096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/303727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103492108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/303727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103492108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/303727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103492108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gigascience/giy059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104238126"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Single-cell RNA sequencing (scRNA-seq) has emerged as a central genome-wide method to characterize cellular identities and processes. Consequently, improving its sensitivity, flexibility, and cost-efficiency can advance many research questions. Among the flexible plate-based methods, single-cell RNA barcoding and sequencing (SCRB-seq) is highly sensitive and efficient. Here, we systematically evaluate experimental conditions of this protocol and find that adding polyethylene glycol considerably increases sensitivity by enhancing cDNA synthesis. Furthermore, using Terra polymerase increases efficiency due to a more even cDNA amplification that requires less sequencing of libraries. We combined these and other improvements to develop a scRNA-seq library protocol we call molecular crowding SCRB-seq (mcSCRB-seq), which we show to be one of the most sensitive, efficient, and flexible scRNA-seq methods to date.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-018-05347-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq", 
        "pagination": "2937", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a56ba892f2df2eb97b8e72de97f05cb4ae135f480bd058fede51742c42d2a65f"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30050112"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-018-05347-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105743404"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-018-05347-6", 
          "https://app.dimensions.ai/details/publication/pub.1105743404"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-018-05347-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05347-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05347-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05347-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05347-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    248 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-018-05347-6 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N27d1cc4d9e004f5b946515103a53ce39
    4 schema:citation sg:pub.10.1038/nature21350
    5 sg:pub.10.1038/nbt.2957
    6 sg:pub.10.1038/nbt.4096
    7 sg:pub.10.1038/ncomms14049
    8 sg:pub.10.1038/nmeth.1342
    9 sg:pub.10.1038/nmeth.1814
    10 sg:pub.10.1038/nmeth.2639
    11 sg:pub.10.1038/nmeth.2772
    12 sg:pub.10.1038/nmeth.4220
    13 sg:pub.10.1038/nmeth1005-731
    14 sg:pub.10.1038/nprot.2010.43
    15 sg:pub.10.1038/nrg3542
    16 sg:pub.10.1038/srep25533
    17 sg:pub.10.1186/gb-2014-15-2-r29
    18 sg:pub.10.1186/s13059-016-0938-8
    19 sg:pub.10.1186/s13059-016-0947-7
    20 sg:pub.10.1186/s13059-018-1407-3
    21 https://doi.org/10.1016/0092-8674(92)90611-f
    22 https://doi.org/10.1016/j.molcel.2015.04.005
    23 https://doi.org/10.1016/j.molcel.2017.01.023
    24 https://doi.org/10.1016/j.tibs.2016.08.013
    25 https://doi.org/10.1073/pnas.80.19.5852
    26 https://doi.org/10.1093/bfgp/ely001
    27 https://doi.org/10.1093/bfgp/ely009
    28 https://doi.org/10.1093/bioinformatics/bts635
    29 https://doi.org/10.1093/bioinformatics/btx435
    30 https://doi.org/10.1093/gigascience/giy059
    31 https://doi.org/10.1093/nar/gkv007
    32 https://doi.org/10.1093/nar/gkv806
    33 https://doi.org/10.1101/003236
    34 https://doi.org/10.1101/093237
    35 https://doi.org/10.1101/303727
    36 https://doi.org/10.12688/f1000research.11290.1
    37 schema:datePublished 2018-12
    38 schema:datePublishedReg 2018-12-01
    39 schema:description Single-cell RNA sequencing (scRNA-seq) has emerged as a central genome-wide method to characterize cellular identities and processes. Consequently, improving its sensitivity, flexibility, and cost-efficiency can advance many research questions. Among the flexible plate-based methods, single-cell RNA barcoding and sequencing (SCRB-seq) is highly sensitive and efficient. Here, we systematically evaluate experimental conditions of this protocol and find that adding polyethylene glycol considerably increases sensitivity by enhancing cDNA synthesis. Furthermore, using Terra polymerase increases efficiency due to a more even cDNA amplification that requires less sequencing of libraries. We combined these and other improvements to develop a scRNA-seq library protocol we call molecular crowding SCRB-seq (mcSCRB-seq), which we show to be one of the most sensitive, efficient, and flexible scRNA-seq methods to date.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N37dd3d31470149839e48df258529557b
    44 Nfb81d770eaf04840a8397bba2d5f18c0
    45 sg:journal.1043282
    46 schema:name Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq
    47 schema:pagination 2937
    48 schema:productId N1b7ffc72ea9a440083595328c6072d36
    49 N34ceec709d07439b9a1bf6c236ec7cdf
    50 N46a996fc5aae4d61b8f42f08c63126f9
    51 Nb988036a804d41b58666a017e8fa60d6
    52 Nce51520fbd1e40efa5cfdf28beb21655
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105743404
    54 https://doi.org/10.1038/s41467-018-05347-6
    55 schema:sdDatePublished 2019-04-10T17:40
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N8f173bab54e14ed4bad3183019548f17
    58 schema:url https://www.nature.com/articles/s41467-018-05347-6
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N1b7ffc72ea9a440083595328c6072d36 schema:name readcube_id
    63 schema:value a56ba892f2df2eb97b8e72de97f05cb4ae135f480bd058fede51742c42d2a65f
    64 rdf:type schema:PropertyValue
    65 N27d1cc4d9e004f5b946515103a53ce39 rdf:first sg:person.013373131514.93
    66 rdf:rest Nda628d23a19b491c919877b0e8082a57
    67 N281842342e9949baaf7ca7a95f8716ed rdf:first sg:person.0742322417.23
    68 rdf:rest N55f71d04ebef4710bfa4fd400b99b0d0
    69 N28b0f44eb5854155bb92f8b0ef0c4236 rdf:first sg:person.0722335051.71
    70 rdf:rest N32acd8047d2d4686976316a864b45ef3
    71 N32acd8047d2d4686976316a864b45ef3 rdf:first sg:person.07655762314.10
    72 rdf:rest N5fbae63a937a40d68e86df0d7a97a50b
    73 N34ceec709d07439b9a1bf6c236ec7cdf schema:name nlm_unique_id
    74 schema:value 101528555
    75 rdf:type schema:PropertyValue
    76 N37dd3d31470149839e48df258529557b schema:issueNumber 1
    77 rdf:type schema:PublicationIssue
    78 N46a996fc5aae4d61b8f42f08c63126f9 schema:name pubmed_id
    79 schema:value 30050112
    80 rdf:type schema:PropertyValue
    81 N55f71d04ebef4710bfa4fd400b99b0d0 rdf:first sg:person.014236625314.86
    82 rdf:rest N962cb3488263435e9102b3fbbbfa6354
    83 N5fbae63a937a40d68e86df0d7a97a50b rdf:first sg:person.0772764422.74
    84 rdf:rest N281842342e9949baaf7ca7a95f8716ed
    85 N8f173bab54e14ed4bad3183019548f17 schema:name Springer Nature - SN SciGraph project
    86 rdf:type schema:Organization
    87 N90dd570379f442d9a90c2a80070d3462 rdf:first sg:person.01133633310.59
    88 rdf:rest rdf:nil
    89 N962cb3488263435e9102b3fbbbfa6354 rdf:first sg:person.01250452344.13
    90 rdf:rest N90dd570379f442d9a90c2a80070d3462
    91 Nb988036a804d41b58666a017e8fa60d6 schema:name dimensions_id
    92 schema:value pub.1105743404
    93 rdf:type schema:PropertyValue
    94 Nce51520fbd1e40efa5cfdf28beb21655 schema:name doi
    95 schema:value 10.1038/s41467-018-05347-6
    96 rdf:type schema:PropertyValue
    97 Nda628d23a19b491c919877b0e8082a57 rdf:first sg:person.013414477267.35
    98 rdf:rest N28b0f44eb5854155bb92f8b0ef0c4236
    99 Nfb81d770eaf04840a8397bba2d5f18c0 schema:volumeNumber 9
    100 rdf:type schema:PublicationVolume
    101 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Biological Sciences
    103 rdf:type schema:DefinedTerm
    104 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Genetics
    106 rdf:type schema:DefinedTerm
    107 sg:journal.1043282 schema:issn 2041-1723
    108 schema:name Nature Communications
    109 rdf:type schema:Periodical
    110 sg:person.01133633310.59 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    111 schema:familyName Enard
    112 schema:givenName Wolfgang
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133633310.59
    114 rdf:type schema:Person
    115 sg:person.01250452344.13 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    116 schema:familyName Hellmann
    117 schema:givenName Ines
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250452344.13
    119 rdf:type schema:Person
    120 sg:person.013373131514.93 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    121 schema:familyName Bagnoli
    122 schema:givenName Johannes W.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373131514.93
    124 rdf:type schema:Person
    125 sg:person.013414477267.35 schema:affiliation https://www.grid.ac/institutes/grid.4714.6
    126 schema:familyName Ziegenhain
    127 schema:givenName Christoph
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013414477267.35
    129 rdf:type schema:Person
    130 sg:person.014236625314.86 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    131 schema:familyName Geuder
    132 schema:givenName Johanna
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014236625314.86
    134 rdf:type schema:Person
    135 sg:person.0722335051.71 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    136 schema:familyName Janjic
    137 schema:givenName Aleksandar
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722335051.71
    139 rdf:type schema:Person
    140 sg:person.0742322417.23 schema:affiliation https://www.grid.ac/institutes/grid.419502.b
    141 schema:familyName Parekh
    142 schema:givenName Swati
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742322417.23
    144 rdf:type schema:Person
    145 sg:person.07655762314.10 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    146 schema:familyName Wange
    147 schema:givenName Lucas E.
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07655762314.10
    149 rdf:type schema:Person
    150 sg:person.0772764422.74 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    151 schema:familyName Vieth
    152 schema:givenName Beate
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772764422.74
    154 rdf:type schema:Person
    155 sg:pub.10.1038/nature21350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036838837
    156 https://doi.org/10.1038/nature21350
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/nbt.2957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027683701
    159 https://doi.org/10.1038/nbt.2957
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1038/nbt.4096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101885942
    162 https://doi.org/10.1038/nbt.4096
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1038/ncomms14049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019155899
    165 https://doi.org/10.1038/ncomms14049
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1038/nmeth.1342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018119119
    168 https://doi.org/10.1038/nmeth.1342
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/nmeth.1814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032915484
    171 https://doi.org/10.1038/nmeth.1814
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1038/nmeth.2639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006291172
    174 https://doi.org/10.1038/nmeth.2639
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1038/nmeth.2772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029706604
    177 https://doi.org/10.1038/nmeth.2772
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1038/nmeth.4220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129311
    180 https://doi.org/10.1038/nmeth.4220
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1038/nmeth1005-731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010489207
    183 https://doi.org/10.1038/nmeth1005-731
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1038/nprot.2010.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004718676
    186 https://doi.org/10.1038/nprot.2010.43
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1038/nrg3542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029194837
    189 https://doi.org/10.1038/nrg3542
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1038/srep25533 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018773010
    192 https://doi.org/10.1038/srep25533
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1186/gb-2014-15-2-r29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045312009
    195 https://doi.org/10.1186/gb-2014-15-2-r29
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1186/s13059-016-0938-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051874242
    198 https://doi.org/10.1186/s13059-016-0938-8
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1186/s13059-016-0947-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000759088
    201 https://doi.org/10.1186/s13059-016-0947-7
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1186/s13059-018-1407-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101398427
    204 https://doi.org/10.1186/s13059-018-1407-3
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/0092-8674(92)90611-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1028643561
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1016/j.molcel.2015.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045959786
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1016/j.molcel.2017.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083847222
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1016/j.tibs.2016.08.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018450956
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1073/pnas.80.19.5852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028613465
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1093/bfgp/ely001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100429973
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1093/bfgp/ely009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101332475
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/bioinformatics/bts635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053365587
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1093/bioinformatics/btx435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090523707
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1093/gigascience/giy059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104238126
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1093/nar/gkv007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016098431
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1093/nar/gkv806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016146134
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1101/003236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085110775
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1101/093237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085101760
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1101/303727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103492108
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.12688/f1000research.11290.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085292116
    237 rdf:type schema:CreativeWork
    238 https://www.grid.ac/institutes/grid.419502.b schema:alternateName Max Planck Institute for Biology of Ageing
    239 schema:name Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Großhaderner Straße 2, 82152, Martinsried, Germany
    240 Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
    241 rdf:type schema:Organization
    242 https://www.grid.ac/institutes/grid.4714.6 schema:alternateName Karolinska Institute
    243 schema:name Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Großhaderner Straße 2, 82152, Martinsried, Germany
    244 Department of Cell & Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
    245 rdf:type schema:Organization
    246 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
    247 schema:name Anthropology & Human Genomics, Department of Biology II, Ludwig-Maximilians-University, Großhaderner Straße 2, 82152, Martinsried, Germany
    248 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...