Photonic crystal cavities from hexagonal boron nitride View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Sejeong Kim, Johannes E. Fröch, Joe Christian, Marcus Straw, James Bishop, Daniel Totonjian, Kenji Watanabe, Takashi Taniguchi, Milos Toth, Igor Aharonovich

ABSTRACT

Development of scalable quantum photonic technologies requires on-chip integration of photonic components. Recently, hexagonal boron nitride (hBN) has emerged as a promising platform, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of high-quality optical resonators. In this letter, we design and engineer suspended photonic crystal cavities from hBN and demonstrate quality (Q) factors in excess of 2000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write EBIE without significant degradation of the Q-factor. The demonstration of tunable cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments. More... »

PAGES

2623

References to SciGraph publications

  • 2018-02. Ultralow-loss polaritons in isotopically pure boron nitride in NATURE MATERIALS
  • 2016-10. Solid-state single-photon emitters in NATURE PHOTONICS
  • 2017-12. Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices in NATURE COMMUNICATIONS
  • 2016-11. Fully integrated quantum photonic circuit with an electrically driven light source in NATURE PHOTONICS
  • 2017-09. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes in NATURE PHOTONICS
  • 2017-07. Deep learning with coherent nanophotonic circuits in NATURE PHOTONICS
  • 2015-12. Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals in NATURE COMMUNICATIONS
  • 2017-12. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits in NATURE COMMUNICATIONS
  • 2016-01. Quantum emission from hexagonal boron nitride monolayers in NATURE NANOTECHNOLOGY
  • 2017-01. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light in NATURE PHOTONICS
  • 2012-01. One- and two-dimensional photonic crystal microcavities in single crystal diamond in NATURE NANOTECHNOLOGY
  • 2015-04. Monolayer semiconductor nanocavity lasers with ultralow thresholds in NATURE
  • 2014-12. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride in NATURE COMMUNICATIONS
  • 2017-08. Evanescent single-molecule biosensing with quantum-limited precision in NATURE PHOTONICS
  • 2011-05. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity in NATURE PHOTONICS
  • 2013-05. A quantum logic gate between a solid-state quantum bit and a photon in NATURE PHOTONICS
  • 2016-04. Hexagonal boron nitride is an indirect bandgap semiconductor in NATURE PHOTONICS
  • 2014-12. High quality-factor optical nanocavities in bulk single-crystal diamond in NATURE COMMUNICATIONS
  • 2009-12. Photonic quantum technologies in NATURE PHOTONICS
  • 2017-11. High-performance semiconductor quantum-dot single-photon sources in NATURE NANOTECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-018-05117-4

    DOI

    http://dx.doi.org/10.1038/s41467-018-05117-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105236467

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29976925


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Optical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Technology Sydney", 
              "id": "https://www.grid.ac/institutes/grid.117476.2", 
              "name": [
                "Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, 2007, Ultimo, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Sejeong", 
            "id": "sg:person.014050427141.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014050427141.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Technology Sydney", 
              "id": "https://www.grid.ac/institutes/grid.117476.2", 
              "name": [
                "Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, 2007, Ultimo, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fr\u00f6ch", 
            "givenName": "Johannes E.", 
            "id": "sg:person.0741035760.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741035760.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Thermo Fisher Scientific (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418190.5", 
              "name": [
                "Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, 97214-5793, Hillsboro, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Christian", 
            "givenName": "Joe", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Thermo Fisher Scientific (United States)", 
              "id": "https://www.grid.ac/institutes/grid.418190.5", 
              "name": [
                "Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, 97214-5793, Hillsboro, OR, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Straw", 
            "givenName": "Marcus", 
            "id": "sg:person.01027704351.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027704351.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Technology Sydney", 
              "id": "https://www.grid.ac/institutes/grid.117476.2", 
              "name": [
                "Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, 2007, Ultimo, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bishop", 
            "givenName": "James", 
            "id": "sg:person.0635661664.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635661664.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Technology Sydney", 
              "id": "https://www.grid.ac/institutes/grid.117476.2", 
              "name": [
                "Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, 2007, Ultimo, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Totonjian", 
            "givenName": "Daniel", 
            "id": "sg:person.01022211461.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022211461.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, 1-1 Namiki Tsukuba, 305-0044, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Kenji", 
            "id": "sg:person.010026307551.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, 1-1 Namiki Tsukuba, 305-0044, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taniguchi", 
            "givenName": "Takashi", 
            "id": "sg:person.0765715521.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Technology Sydney", 
              "id": "https://www.grid.ac/institutes/grid.117476.2", 
              "name": [
                "Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, 2007, Ultimo, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toth", 
            "givenName": "Milos", 
            "id": "sg:person.0666740316.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666740316.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Technology Sydney", 
              "id": "https://www.grid.ac/institutes/grid.117476.2", 
              "name": [
                "Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, 2007, Ultimo, NSW, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aharonovich", 
            "givenName": "Igor", 
            "id": "sg:person.0646024036.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646024036.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.95.013904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000461663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.013904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000461663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.95.013904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000461663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010299183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.87.347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010299183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012691322", 
              "https://doi.org/10.1038/ncomms6221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.045315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012712815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.045315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012712815"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b01987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013944160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2011.190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015617555", 
              "https://doi.org/10.1038/nnano.2011.190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016693583", 
              "https://doi.org/10.1038/ncomms9206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020983585", 
              "https://doi.org/10.1038/nphoton.2016.186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b01368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025099287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026995369", 
              "https://doi.org/10.1038/nature14290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6718", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028149564", 
              "https://doi.org/10.1038/ncomms6718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028684577", 
              "https://doi.org/10.1038/nphoton.2015.277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcrysgro.2006.12.061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032042574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2011.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032183712", 
              "https://doi.org/10.1038/nphoton.2011.52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6nr04959a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040357495"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040627632", 
              "https://doi.org/10.1038/nnano.2015.242"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aah6875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045091970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049236979", 
              "https://doi.org/10.1038/nphoton.2009.229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049236979", 
              "https://doi.org/10.1038/nphoton.2009.229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051805175", 
              "https://doi.org/10.1038/nphoton.2013.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052550385", 
              "https://doi.org/10.1038/nphoton.2016.236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2016.178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052639767", 
              "https://doi.org/10.1038/nphoton.2016.178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b02542", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053363530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.6b03268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055121797"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.6b03602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055138031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsphotonics.6b00736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055139121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.22.000916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065206265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.40.005351", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065238396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.7b00665", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084125220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsphotonics.7b00025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084125366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.125313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084198264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.95.125313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084198264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085982498", 
              "https://doi.org/10.1038/nphoton.2017.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085982498", 
              "https://doi.org/10.1038/nphoton.2017.93"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086173184", 
              "https://doi.org/10.1038/nphoton.2017.99"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086173184", 
              "https://doi.org/10.1038/nphoton.2017.99"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090930427", 
              "https://doi.org/10.1038/nphoton.2017.119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2017.119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090930427", 
              "https://doi.org/10.1038/nphoton.2017.119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b02092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091148091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00486-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091331670", 
              "https://doi.org/10.1038/s41467-017-00486-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.7b02222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092068167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-00987-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092119329", 
              "https://doi.org/10.1038/s41467-017-00987-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092571520", 
              "https://doi.org/10.1038/nnano.2017.218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2017.218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092571520", 
              "https://doi.org/10.1038/nnano.2017.218"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat5047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099639277", 
              "https://doi.org/10.1038/nmat5047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat5047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099639277", 
              "https://doi.org/10.1038/nmat5047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3762/bjnano.9.12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100285057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c7nr08222c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101886545"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Development of scalable quantum photonic technologies requires on-chip integration of photonic components. Recently, hexagonal boron nitride (hBN) has emerged as a promising platform, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of high-quality optical resonators. In this letter, we design and engineer suspended photonic crystal cavities from hBN and demonstrate quality (Q) factors in excess of 2000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write EBIE without significant degradation of the Q-factor. The demonstration of tunable cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-018-05117-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5885411", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7147133", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7074199", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3931951", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Photonic crystal cavities from hexagonal boron nitride", 
        "pagination": "2623", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e3a492b3962d2a96f70e94aee19db4b79ad1f428950487ecd4c8d8f75be63ae6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29976925"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-018-05117-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105236467"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-018-05117-4", 
          "https://app.dimensions.ai/details/publication/pub.1105236467"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-018-05117-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05117-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05117-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05117-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-05117-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    287 TRIPLES      21 PREDICATES      70 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-018-05117-4 schema:about anzsrc-for:02
    2 anzsrc-for:0205
    3 schema:author Nfd6c9ef452384d4b8e5b1c106f1f13fe
    4 schema:citation sg:pub.10.1038/nature14290
    5 sg:pub.10.1038/ncomms6221
    6 sg:pub.10.1038/ncomms6718
    7 sg:pub.10.1038/ncomms9206
    8 sg:pub.10.1038/nmat5047
    9 sg:pub.10.1038/nnano.2011.190
    10 sg:pub.10.1038/nnano.2015.242
    11 sg:pub.10.1038/nnano.2017.218
    12 sg:pub.10.1038/nphoton.2009.229
    13 sg:pub.10.1038/nphoton.2011.52
    14 sg:pub.10.1038/nphoton.2013.48
    15 sg:pub.10.1038/nphoton.2015.277
    16 sg:pub.10.1038/nphoton.2016.178
    17 sg:pub.10.1038/nphoton.2016.186
    18 sg:pub.10.1038/nphoton.2016.236
    19 sg:pub.10.1038/nphoton.2017.119
    20 sg:pub.10.1038/nphoton.2017.93
    21 sg:pub.10.1038/nphoton.2017.99
    22 sg:pub.10.1038/s41467-017-00486-8
    23 sg:pub.10.1038/s41467-017-00987-6
    24 https://doi.org/10.1016/j.jcrysgro.2006.12.061
    25 https://doi.org/10.1021/acs.nanolett.5b02542
    26 https://doi.org/10.1021/acs.nanolett.6b01368
    27 https://doi.org/10.1021/acs.nanolett.6b01987
    28 https://doi.org/10.1021/acs.nanolett.6b03268
    29 https://doi.org/10.1021/acs.nanolett.7b02092
    30 https://doi.org/10.1021/acs.nanolett.7b02222
    31 https://doi.org/10.1021/acsnano.6b03602
    32 https://doi.org/10.1021/acsnano.7b00665
    33 https://doi.org/10.1021/acsphotonics.6b00736
    34 https://doi.org/10.1021/acsphotonics.7b00025
    35 https://doi.org/10.1039/c6nr04959a
    36 https://doi.org/10.1039/c7nr08222c
    37 https://doi.org/10.1103/physrevb.86.045315
    38 https://doi.org/10.1103/physrevb.95.125313
    39 https://doi.org/10.1103/physrevlett.95.013904
    40 https://doi.org/10.1103/revmodphys.87.347
    41 https://doi.org/10.1126/science.aah6875
    42 https://doi.org/10.1364/oe.22.000916
    43 https://doi.org/10.1364/ol.40.005351
    44 https://doi.org/10.3762/bjnano.9.12
    45 schema:datePublished 2018-12
    46 schema:datePublishedReg 2018-12-01
    47 schema:description Development of scalable quantum photonic technologies requires on-chip integration of photonic components. Recently, hexagonal boron nitride (hBN) has emerged as a promising platform, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of high-quality optical resonators. In this letter, we design and engineer suspended photonic crystal cavities from hBN and demonstrate quality (Q) factors in excess of 2000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write EBIE without significant degradation of the Q-factor. The demonstration of tunable cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments.
    48 schema:genre research_article
    49 schema:inLanguage en
    50 schema:isAccessibleForFree true
    51 schema:isPartOf N8a9f8a7d84c7437b9cd1a1a44bc911ca
    52 Nfaec4363a0d24885afe18fa62257f8cd
    53 sg:journal.1043282
    54 schema:name Photonic crystal cavities from hexagonal boron nitride
    55 schema:pagination 2623
    56 schema:productId N06f9e574fe434c8bae2e83e895244b19
    57 N1cd02399478940c5a634b7ef3639fcd6
    58 Naaaf99fa0b544369b781788d084295d1
    59 Nd3214016a93e425cb67d0cb01e335478
    60 Ne797fc3a62e847688d55b330fbacff52
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105236467
    62 https://doi.org/10.1038/s41467-018-05117-4
    63 schema:sdDatePublished 2019-04-10T16:00
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Ncc1216352ee4420386372a2dbb05d983
    66 schema:url https://www.nature.com/articles/s41467-018-05117-4
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N02a24318f9d348feb36c6f261a01442c rdf:first sg:person.0666740316.08
    71 rdf:rest N83a6b2cb298648ffb0e110857c3b0064
    72 N06f9e574fe434c8bae2e83e895244b19 schema:name pubmed_id
    73 schema:value 29976925
    74 rdf:type schema:PropertyValue
    75 N0d70635acef64027b750eeaebb2fa137 rdf:first sg:person.0765715521.02
    76 rdf:rest N02a24318f9d348feb36c6f261a01442c
    77 N19bd72f9ad4143e7b8ccb7aa88534783 rdf:first sg:person.01027704351.16
    78 rdf:rest Nc716b19349f34c968c46227c6d4f04e9
    79 N1cd02399478940c5a634b7ef3639fcd6 schema:name readcube_id
    80 schema:value e3a492b3962d2a96f70e94aee19db4b79ad1f428950487ecd4c8d8f75be63ae6
    81 rdf:type schema:PropertyValue
    82 N230acec273964141a91e93d24151c093 rdf:first N5e4466421b51430781947f9ae8196cba
    83 rdf:rest N19bd72f9ad4143e7b8ccb7aa88534783
    84 N5e4466421b51430781947f9ae8196cba schema:affiliation https://www.grid.ac/institutes/grid.418190.5
    85 schema:familyName Christian
    86 schema:givenName Joe
    87 rdf:type schema:Person
    88 N83a6b2cb298648ffb0e110857c3b0064 rdf:first sg:person.0646024036.44
    89 rdf:rest rdf:nil
    90 N8a9f8a7d84c7437b9cd1a1a44bc911ca schema:issueNumber 1
    91 rdf:type schema:PublicationIssue
    92 Naaaf99fa0b544369b781788d084295d1 schema:name dimensions_id
    93 schema:value pub.1105236467
    94 rdf:type schema:PropertyValue
    95 Nc716b19349f34c968c46227c6d4f04e9 rdf:first sg:person.0635661664.35
    96 rdf:rest Nfaf2d59dd0e94b828c38549692ea9c69
    97 Ncc1216352ee4420386372a2dbb05d983 schema:name Springer Nature - SN SciGraph project
    98 rdf:type schema:Organization
    99 Nd3214016a93e425cb67d0cb01e335478 schema:name nlm_unique_id
    100 schema:value 101528555
    101 rdf:type schema:PropertyValue
    102 Ne3423c62312647dfbbea039259e858f1 rdf:first sg:person.0741035760.08
    103 rdf:rest N230acec273964141a91e93d24151c093
    104 Ne797fc3a62e847688d55b330fbacff52 schema:name doi
    105 schema:value 10.1038/s41467-018-05117-4
    106 rdf:type schema:PropertyValue
    107 Nfa808048699b44a6a695ee2d2314fa53 rdf:first sg:person.010026307551.76
    108 rdf:rest N0d70635acef64027b750eeaebb2fa137
    109 Nfaec4363a0d24885afe18fa62257f8cd schema:volumeNumber 9
    110 rdf:type schema:PublicationVolume
    111 Nfaf2d59dd0e94b828c38549692ea9c69 rdf:first sg:person.01022211461.03
    112 rdf:rest Nfa808048699b44a6a695ee2d2314fa53
    113 Nfd6c9ef452384d4b8e5b1c106f1f13fe rdf:first sg:person.014050427141.00
    114 rdf:rest Ne3423c62312647dfbbea039259e858f1
    115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Physical Sciences
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Optical Physics
    120 rdf:type schema:DefinedTerm
    121 sg:grant.3931951 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-05117-4
    122 rdf:type schema:MonetaryGrant
    123 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-05117-4
    124 rdf:type schema:MonetaryGrant
    125 sg:grant.7074199 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-05117-4
    126 rdf:type schema:MonetaryGrant
    127 sg:grant.7147133 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-05117-4
    128 rdf:type schema:MonetaryGrant
    129 sg:journal.1043282 schema:issn 2041-1723
    130 schema:name Nature Communications
    131 rdf:type schema:Periodical
    132 sg:person.010026307551.76 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    133 schema:familyName Watanabe
    134 schema:givenName Kenji
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010026307551.76
    136 rdf:type schema:Person
    137 sg:person.01022211461.03 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
    138 schema:familyName Totonjian
    139 schema:givenName Daniel
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022211461.03
    141 rdf:type schema:Person
    142 sg:person.01027704351.16 schema:affiliation https://www.grid.ac/institutes/grid.418190.5
    143 schema:familyName Straw
    144 schema:givenName Marcus
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01027704351.16
    146 rdf:type schema:Person
    147 sg:person.014050427141.00 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
    148 schema:familyName Kim
    149 schema:givenName Sejeong
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014050427141.00
    151 rdf:type schema:Person
    152 sg:person.0635661664.35 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
    153 schema:familyName Bishop
    154 schema:givenName James
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635661664.35
    156 rdf:type schema:Person
    157 sg:person.0646024036.44 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
    158 schema:familyName Aharonovich
    159 schema:givenName Igor
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0646024036.44
    161 rdf:type schema:Person
    162 sg:person.0666740316.08 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
    163 schema:familyName Toth
    164 schema:givenName Milos
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666740316.08
    166 rdf:type schema:Person
    167 sg:person.0741035760.08 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
    168 schema:familyName Fröch
    169 schema:givenName Johannes E.
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741035760.08
    171 rdf:type schema:Person
    172 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    173 schema:familyName Taniguchi
    174 schema:givenName Takashi
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
    176 rdf:type schema:Person
    177 sg:pub.10.1038/nature14290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026995369
    178 https://doi.org/10.1038/nature14290
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/ncomms6221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012691322
    181 https://doi.org/10.1038/ncomms6221
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/ncomms6718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028149564
    184 https://doi.org/10.1038/ncomms6718
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/ncomms9206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016693583
    187 https://doi.org/10.1038/ncomms9206
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nmat5047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099639277
    190 https://doi.org/10.1038/nmat5047
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nnano.2011.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015617555
    193 https://doi.org/10.1038/nnano.2011.190
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nnano.2015.242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040627632
    196 https://doi.org/10.1038/nnano.2015.242
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nnano.2017.218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092571520
    199 https://doi.org/10.1038/nnano.2017.218
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nphoton.2009.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049236979
    202 https://doi.org/10.1038/nphoton.2009.229
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nphoton.2011.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032183712
    205 https://doi.org/10.1038/nphoton.2011.52
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nphoton.2013.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051805175
    208 https://doi.org/10.1038/nphoton.2013.48
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nphoton.2015.277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028684577
    211 https://doi.org/10.1038/nphoton.2015.277
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nphoton.2016.178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052639767
    214 https://doi.org/10.1038/nphoton.2016.178
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nphoton.2016.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020983585
    217 https://doi.org/10.1038/nphoton.2016.186
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nphoton.2016.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052550385
    220 https://doi.org/10.1038/nphoton.2016.236
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nphoton.2017.119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090930427
    223 https://doi.org/10.1038/nphoton.2017.119
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nphoton.2017.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085982498
    226 https://doi.org/10.1038/nphoton.2017.93
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nphoton.2017.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086173184
    229 https://doi.org/10.1038/nphoton.2017.99
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/s41467-017-00486-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091331670
    232 https://doi.org/10.1038/s41467-017-00486-8
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/s41467-017-00987-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092119329
    235 https://doi.org/10.1038/s41467-017-00987-6
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.jcrysgro.2006.12.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032042574
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1021/acs.nanolett.5b02542 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053363530
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1021/acs.nanolett.6b01368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025099287
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1021/acs.nanolett.6b01987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013944160
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1021/acs.nanolett.6b03268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121797
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1021/acs.nanolett.7b02092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091148091
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1021/acs.nanolett.7b02222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092068167
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1021/acsnano.6b03602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138031
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1021/acsnano.7b00665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084125220
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1021/acsphotonics.6b00736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055139121
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1021/acsphotonics.7b00025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084125366
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1039/c6nr04959a schema:sameAs https://app.dimensions.ai/details/publication/pub.1040357495
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1039/c7nr08222c schema:sameAs https://app.dimensions.ai/details/publication/pub.1101886545
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1103/physrevb.86.045315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012712815
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1103/physrevb.95.125313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084198264
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1103/physrevlett.95.013904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000461663
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1103/revmodphys.87.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010299183
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1126/science.aah6875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045091970
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1364/oe.22.000916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065206265
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1364/ol.40.005351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065238396
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.3762/bjnano.9.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100285057
    278 rdf:type schema:CreativeWork
    279 https://www.grid.ac/institutes/grid.117476.2 schema:alternateName University of Technology Sydney
    280 schema:name Faculty of Science, Institute of Biomedical Materials and Devices (IBMD), University of Technology Sydney, 2007, Ultimo, NSW, Australia
    281 rdf:type schema:Organization
    282 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
    283 schema:name National Institute for Materials Science, 1-1 Namiki Tsukuba, 305-0044, Ibaraki, Japan
    284 rdf:type schema:Organization
    285 https://www.grid.ac/institutes/grid.418190.5 schema:alternateName Thermo Fisher Scientific (United States)
    286 schema:name Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, 97214-5793, Hillsboro, OR, USA
    287 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...