Thermodynamic and structural anomalies of water nanodroplets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Shahrazad M. A. Malek, Peter H. Poole, Ivan Saika-Voivod

ABSTRACT

Liquid water nanodroplets are important in earth's climate, and are valuable for studying supercooled water because they resist crystallisation well below the bulk freezing temperature. Bulk liquid water has well-known thermodynamic anomalies, such as a density maximum, and when supercooled is hypothesised to exhibit a liquid-liquid phase transition (LLPT) at elevated pressure. However, it is not known how these bulk anomalies might manifest themselves in nanodroplets. Here we show, using simulations of the TIP4P/2005 water model, that bulk anomalies occur in nanodroplets as small as 360 molecules. We also show that the Laplace pressure inside small droplets reaches 220 MPa at 180 K, conditions close to the LLPT of TIP4P/2005. While the density and pressure inside nanodroplets coincide with bulk values at moderate supercooling, we show that deviations emerge at lower temperature, as well as significant radial density gradients, which arise from and signal the approach to the LLPT. More... »

PAGES

2402

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-04816-2

DOI

http://dx.doi.org/10.1038/s41467-018-04816-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104585031

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29921912


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Memorial University of Newfoundland", 
          "id": "https://www.grid.ac/institutes/grid.25055.37", 
          "name": [
            "Department of Physics and Physical Oceanography, Memorial University of Newfoundland, A1B 3X7, St. John\u2019s, NL, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malek", 
        "givenName": "Shahrazad M. A.", 
        "id": "sg:person.0643276432.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643276432.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St. Francis Xavier University", 
          "id": "https://www.grid.ac/institutes/grid.264060.6", 
          "name": [
            "Department of Physics, St. Francis Xavier University, B2G 2W5, Antigonish, NS, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poole", 
        "givenName": "Peter H.", 
        "id": "sg:person.0746024206.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746024206.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial University of Newfoundland", 
          "id": "https://www.grid.ac/institutes/grid.25055.37", 
          "name": [
            "Department of Physics and Physical Oceanography, Memorial University of Newfoundland, A1B 3X7, St. John\u2019s, NL, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saika-Voivod", 
        "givenName": "Ivan", 
        "id": "sg:person.0773715661.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773715661.46"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/102866202100002518a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003998122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006840310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006840310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2014.09.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011071152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1896348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012937261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.031604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019202182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.031604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019202182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2008-00109-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019459987", 
          "https://doi.org/10.1140/epjb/e2008-00109-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b514824c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023612979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b514824c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023612979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/360324a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024336702", 
          "https://doi.org/10.1038/360324a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01442350412331316124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026512652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2015-15039-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026794965", 
          "https://doi.org/10.1140/epje/i2015-15039-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaerosci.2003.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028549082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031952699", 
          "https://doi.org/10.1038/nature13266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0508231103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032490495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp23116f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036146142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/45/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043935192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja405408n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045941562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0cp01923b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047896510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5315.1072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050235433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051604099", 
          "https://doi.org/10.1038/ncomms2918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018735800101237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052049271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemrev.5b00750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055085246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct700301q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055425839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct700301q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055425839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100012a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055648936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja1041989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja1041989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055847669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja210878c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055851573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052683g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp052683g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056061455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp400070v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056093470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn200252w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1638740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057728761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2121687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057838121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2715577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057859579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3215722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057919605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.454720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058032733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.28.784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060533864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.032801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.032801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.073401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.073401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.056102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.116.056102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.105701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.105701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1090848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1225468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4973546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079397940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4973546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079397940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsearthspacechem.7b00011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085626824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpclett.7b02563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092249645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2017-11588-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092592822", 
          "https://doi.org/10.1140/epje/i2017-11588-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aap8269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099906561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.015501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100180222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.120.015501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100180222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-648x/aab196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101167367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5019362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101191711"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Liquid water nanodroplets are important in earth's climate, and are valuable for studying supercooled water because they resist crystallisation well below the bulk freezing temperature. Bulk liquid water has well-known thermodynamic anomalies, such as a density maximum, and when supercooled is hypothesised to exhibit a liquid-liquid phase transition (LLPT) at elevated pressure. However, it is not known how these bulk anomalies might manifest themselves in nanodroplets. Here we show, using simulations of the TIP4P/2005 water model, that bulk anomalies occur in nanodroplets as small as 360 molecules. We also show that the Laplace pressure inside small droplets reaches 220\u2009MPa at 180\u2009K, conditions close to the LLPT of TIP4P/2005. While the density and pressure inside nanodroplets coincide with bulk values at moderate supercooling, we show that deviations emerge at lower temperature, as well as significant radial density gradients, which arise from and signal the approach to the LLPT.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-04816-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Thermodynamic and structural anomalies of water nanodroplets", 
    "pagination": "2402", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e78749e13043bb2a4468c1e52ef2224443a5f2ac8899caec27c45da45e224a1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29921912"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-04816-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104585031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-04816-2", 
      "https://app.dimensions.ai/details/publication/pub.1104585031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-04816-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04816-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04816-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04816-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04816-2'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      77 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-04816-2 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Ndd7bee5789f345deae7b555233887e72
4 schema:citation sg:pub.10.1038/360324a0
5 sg:pub.10.1038/nature13266
6 sg:pub.10.1038/ncomms2918
7 sg:pub.10.1140/epjb/e2008-00109-x
8 sg:pub.10.1140/epje/i2015-15039-x
9 sg:pub.10.1140/epje/i2017-11588-2
10 https://doi.org/10.1016/j.jaerosci.2003.10.003
11 https://doi.org/10.1016/j.jnoncrysol.2014.09.037
12 https://doi.org/10.1021/acs.chemrev.5b00750
13 https://doi.org/10.1021/acs.jpclett.7b02563
14 https://doi.org/10.1021/acsearthspacechem.7b00011
15 https://doi.org/10.1021/ct700301q
16 https://doi.org/10.1021/j100012a010
17 https://doi.org/10.1021/ja1041989
18 https://doi.org/10.1021/ja210878c
19 https://doi.org/10.1021/ja405408n
20 https://doi.org/10.1021/jp052683g
21 https://doi.org/10.1021/jp400070v
22 https://doi.org/10.1021/nn200252w
23 https://doi.org/10.1039/b514824c
24 https://doi.org/10.1039/c0cp01923b
25 https://doi.org/10.1039/c2cp23116f
26 https://doi.org/10.1063/1.1638740
27 https://doi.org/10.1063/1.1896348
28 https://doi.org/10.1063/1.2121687
29 https://doi.org/10.1063/1.2715577
30 https://doi.org/10.1063/1.3215722
31 https://doi.org/10.1063/1.454720
32 https://doi.org/10.1063/1.4973546
33 https://doi.org/10.1063/1.5019362
34 https://doi.org/10.1073/pnas.0508231103
35 https://doi.org/10.1080/00018735800101237
36 https://doi.org/10.1080/01442350412331316124
37 https://doi.org/10.1080/102866202100002518a
38 https://doi.org/10.1088/0953-8984/15/45/r01
39 https://doi.org/10.1088/1361-648x/aab196
40 https://doi.org/10.1103/physrevb.28.784
41 https://doi.org/10.1103/physreve.76.031604
42 https://doi.org/10.1103/physreve.93.032801
43 https://doi.org/10.1103/physrevlett.103.073401
44 https://doi.org/10.1103/physrevlett.116.056102
45 https://doi.org/10.1103/physrevlett.120.015501
46 https://doi.org/10.1103/physrevlett.82.2294
47 https://doi.org/10.1103/physrevlett.97.105701
48 https://doi.org/10.1126/science.1090848
49 https://doi.org/10.1126/science.1225468
50 https://doi.org/10.1126/science.276.5315.1072
51 https://doi.org/10.1126/science.aap8269
52 schema:datePublished 2018-12
53 schema:datePublishedReg 2018-12-01
54 schema:description Liquid water nanodroplets are important in earth's climate, and are valuable for studying supercooled water because they resist crystallisation well below the bulk freezing temperature. Bulk liquid water has well-known thermodynamic anomalies, such as a density maximum, and when supercooled is hypothesised to exhibit a liquid-liquid phase transition (LLPT) at elevated pressure. However, it is not known how these bulk anomalies might manifest themselves in nanodroplets. Here we show, using simulations of the TIP4P/2005 water model, that bulk anomalies occur in nanodroplets as small as 360 molecules. We also show that the Laplace pressure inside small droplets reaches 220 MPa at 180 K, conditions close to the LLPT of TIP4P/2005. While the density and pressure inside nanodroplets coincide with bulk values at moderate supercooling, we show that deviations emerge at lower temperature, as well as significant radial density gradients, which arise from and signal the approach to the LLPT.
55 schema:genre research_article
56 schema:inLanguage en
57 schema:isAccessibleForFree true
58 schema:isPartOf N0cb95906b29740549b336981dddcbbd8
59 Nd8836cc5e4d14e2c99f8fc2cc6a36e6d
60 sg:journal.1043282
61 schema:name Thermodynamic and structural anomalies of water nanodroplets
62 schema:pagination 2402
63 schema:productId N0281a72df5d04392ac9563525b27771b
64 N0f536e131f0c46a78fb031361880fbf1
65 N2e1d7e9cabae4e76bd2af3711b0f735f
66 N36d064872b2b427e9f3c9a6ebbfe2098
67 N7f17f01973fc4d218a2ef18735dd3d06
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104585031
69 https://doi.org/10.1038/s41467-018-04816-2
70 schema:sdDatePublished 2019-04-10T17:45
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N0354b4e37ddc4fc68efd8bb223a0df11
73 schema:url https://www.nature.com/articles/s41467-018-04816-2
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N01ee33ddf1044c8aafbdccfcc1eaa11d rdf:first sg:person.0773715661.46
78 rdf:rest rdf:nil
79 N0281a72df5d04392ac9563525b27771b schema:name doi
80 schema:value 10.1038/s41467-018-04816-2
81 rdf:type schema:PropertyValue
82 N0354b4e37ddc4fc68efd8bb223a0df11 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N0cb95906b29740549b336981dddcbbd8 schema:volumeNumber 9
85 rdf:type schema:PublicationVolume
86 N0f536e131f0c46a78fb031361880fbf1 schema:name pubmed_id
87 schema:value 29921912
88 rdf:type schema:PropertyValue
89 N2e1d7e9cabae4e76bd2af3711b0f735f schema:name nlm_unique_id
90 schema:value 101528555
91 rdf:type schema:PropertyValue
92 N36d064872b2b427e9f3c9a6ebbfe2098 schema:name readcube_id
93 schema:value 7e78749e13043bb2a4468c1e52ef2224443a5f2ac8899caec27c45da45e224a1
94 rdf:type schema:PropertyValue
95 N7f17f01973fc4d218a2ef18735dd3d06 schema:name dimensions_id
96 schema:value pub.1104585031
97 rdf:type schema:PropertyValue
98 Nc06b6d4f63fa428e89faf4ade7d66427 rdf:first sg:person.0746024206.46
99 rdf:rest N01ee33ddf1044c8aafbdccfcc1eaa11d
100 Nd8836cc5e4d14e2c99f8fc2cc6a36e6d schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 Ndd7bee5789f345deae7b555233887e72 rdf:first sg:person.0643276432.14
103 rdf:rest Nc06b6d4f63fa428e89faf4ade7d66427
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
108 schema:name Chemical Engineering
109 rdf:type schema:DefinedTerm
110 sg:journal.1043282 schema:issn 2041-1723
111 schema:name Nature Communications
112 rdf:type schema:Periodical
113 sg:person.0643276432.14 schema:affiliation https://www.grid.ac/institutes/grid.25055.37
114 schema:familyName Malek
115 schema:givenName Shahrazad M. A.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643276432.14
117 rdf:type schema:Person
118 sg:person.0746024206.46 schema:affiliation https://www.grid.ac/institutes/grid.264060.6
119 schema:familyName Poole
120 schema:givenName Peter H.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0746024206.46
122 rdf:type schema:Person
123 sg:person.0773715661.46 schema:affiliation https://www.grid.ac/institutes/grid.25055.37
124 schema:familyName Saika-Voivod
125 schema:givenName Ivan
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0773715661.46
127 rdf:type schema:Person
128 sg:pub.10.1038/360324a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024336702
129 https://doi.org/10.1038/360324a0
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nature13266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031952699
132 https://doi.org/10.1038/nature13266
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/ncomms2918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051604099
135 https://doi.org/10.1038/ncomms2918
136 rdf:type schema:CreativeWork
137 sg:pub.10.1140/epjb/e2008-00109-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019459987
138 https://doi.org/10.1140/epjb/e2008-00109-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1140/epje/i2015-15039-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026794965
141 https://doi.org/10.1140/epje/i2015-15039-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1140/epje/i2017-11588-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092592822
144 https://doi.org/10.1140/epje/i2017-11588-2
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jaerosci.2003.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028549082
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jnoncrysol.2014.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011071152
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/acs.chemrev.5b00750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055085246
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/acs.jpclett.7b02563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092249645
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/acsearthspacechem.7b00011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085626824
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/ct700301q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055425839
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/j100012a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055648936
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/ja1041989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055847669
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/ja210878c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055851573
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/ja405408n schema:sameAs https://app.dimensions.ai/details/publication/pub.1045941562
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/jp052683g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056061455
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/jp400070v schema:sameAs https://app.dimensions.ai/details/publication/pub.1056093470
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/nn200252w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223273
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/b514824c schema:sameAs https://app.dimensions.ai/details/publication/pub.1023612979
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1039/c0cp01923b schema:sameAs https://app.dimensions.ai/details/publication/pub.1047896510
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/c2cp23116f schema:sameAs https://app.dimensions.ai/details/publication/pub.1036146142
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.1638740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057728761
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.1896348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012937261
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.2121687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057838121
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.2715577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057859579
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.3215722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057919605
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.454720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058032733
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.4973546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079397940
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.5019362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101191711
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1073/pnas.0508231103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032490495
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1080/00018735800101237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052049271
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1080/01442350412331316124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026512652
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1080/102866202100002518a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003998122
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/0953-8984/15/45/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043935192
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/1361-648x/aab196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101167367
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.28.784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060533864
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreve.76.031604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202182
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreve.93.032801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749311
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.103.073401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755861
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physrevlett.116.056102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764946
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevlett.120.015501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100180222
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.82.2294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006840310
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.97.105701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832806
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1126/science.1090848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449039
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1126/science.1225468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466904
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1126/science.276.5315.1072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050235433
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1126/science.aap8269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099906561
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.25055.37 schema:alternateName Memorial University of Newfoundland
231 schema:name Department of Physics and Physical Oceanography, Memorial University of Newfoundland, A1B 3X7, St. John’s, NL, Canada
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.264060.6 schema:alternateName St. Francis Xavier University
234 schema:name Department of Physics, St. Francis Xavier University, B2G 2W5, Antigonish, NS, Canada
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...