Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Zhaoyan Luo, Yixin Ouyang, Hao Zhang, Meiling Xiao, Junjie Ge, Zheng Jiang, Jinlan Wang, Daiming Tang, Xinzhong Cao, Changpeng Liu, Wei Xing

ABSTRACT

Lacking strategies to simultaneously address the intrinsic activity, site density, electrical transport, and stability problems of chalcogels is restricting their application in catalytic hydrogen production. Herein, we resolve these challenges concurrently through chemically activating the molybdenum disulfide (MoS2) surface basal plane by doping with a low content of atomic palladium using a spontaneous interfacial redox technique. Palladium substitution occurs at the molybdenum site, simultaneously introducing sulfur vacancy and converting the 2H into the stabilized 1T structure. Theoretical calculations demonstrate the sulfur atoms next to the palladium sites exhibit low hydrogen adsorption energy at -0.02 eV. The final MoS2 doped with only 1wt% of palladium demonstrates exchange current density of 805 μA cm-2 and 78 mV overpotential at 10 mA cm-2, accompanied by a good stability. The combined advantages of our surface activating technique open the possibility of manipulating the catalytic performance of MoS2 to rival platinum. More... »

PAGES

2120

References to SciGraph publications

  • 2016-02-10. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction in NATURE COMMUNICATIONS
  • 2012-11. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis in NATURE MATERIALS
  • 2016-03. Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies in NATURE MATERIALS
  • 2015-05. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials in NATURE NANOTECHNOLOGY
  • 2015-12. An efficient molybdenum disulfide/cobalt diselenide hybrid catalyst for electrochemical hydrogen generation in NATURE COMMUNICATIONS
  • 2015-12. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production in NATURE COMMUNICATIONS
  • 2017-04-21. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution in NATURE COMMUNICATIONS
  • 2016-09. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen in NATURE MATERIALS
  • 2014-12. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide in NATURE COMMUNICATIONS
  • 2017-08. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction in NATURE CHEMISTRY
  • 2015-12. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity in NATURE COMMUNICATIONS
  • 2013-04. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets in NATURE CHEMISTRY
  • 2015-12. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4

    DOI

    http://dx.doi.org/10.1038/s41467-018-04501-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104200799

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29844358


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Science and Technology of China", 
              "id": "https://www.grid.ac/institutes/grid.59053.3a", 
              "name": [
                "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China", 
                "University of Science and Technology of China, 230026, Hefei, Anhui, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Luo", 
            "givenName": "Zhaoyan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ouyang", 
            "givenName": "Yixin", 
            "id": "sg:person.011231601305.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231601305.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Institute of Applied Physics", 
              "id": "https://www.grid.ac/institutes/grid.450275.1", 
              "name": [
                "Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Hao", 
            "id": "sg:person.011340530103.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340530103.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Changchun Institute of Applied Chemistry", 
              "id": "https://www.grid.ac/institutes/grid.453213.2", 
              "name": [
                "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xiao", 
            "givenName": "Meiling", 
            "id": "sg:person.07660637711.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660637711.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Changchun Institute of Applied Chemistry", 
              "id": "https://www.grid.ac/institutes/grid.453213.2", 
              "name": [
                "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ge", 
            "givenName": "Junjie", 
            "id": "sg:person.012675653451.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675653451.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shanghai Institute of Applied Physics", 
              "id": "https://www.grid.ac/institutes/grid.450275.1", 
              "name": [
                "Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Zheng", 
            "id": "sg:person.01247406306.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247406306.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hunan Normal University", 
              "id": "https://www.grid.ac/institutes/grid.411427.5", 
              "name": [
                "School of Physics, Southeast University, 211189, Nanjing, China", 
                "Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, 410081, Changsha, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jinlan", 
            "id": "sg:person.01066252541.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066252541.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, Namiki 1-1, 305-0044, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Daiming", 
            "id": "sg:person.01152170107.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152170107.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of High Energy Physics", 
              "id": "https://www.grid.ac/institutes/grid.418741.f", 
              "name": [
                "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Xinzhong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Changchun Institute of Applied Chemistry", 
              "id": "https://www.grid.ac/institutes/grid.453213.2", 
              "name": [
                "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Changpeng", 
            "id": "sg:person.0637347100.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637347100.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Changchun Institute of Applied Chemistry", 
              "id": "https://www.grid.ac/institutes/grid.453213.2", 
              "name": [
                "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xing", 
            "givenName": "Wei", 
            "id": "sg:person.014270614451.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270614451.21"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.disc.2008.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000983043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl400258t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001201701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001714983", 
              "https://doi.org/10.1038/nmat4564"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3nr06072a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002119279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3nr04975b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002588829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003006397", 
              "https://doi.org/10.1038/ncomms6982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4660", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003218397", 
              "https://doi.org/10.1038/nmat4660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0504690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004107076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0504690", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004107076"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6ta06174e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004206349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl404444k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007027451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/8/47/022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007098594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.40", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007402816", 
              "https://doi.org/10.1038/nnano.2015.40"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201504024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008525173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat3439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011433921", 
              "https://doi.org/10.1038/nmat3439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0039-6028(96)80007-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012774798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms3995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014167688", 
              "https://doi.org/10.1038/ncomms3995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chemphys.2014.02.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018064909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019300299", 
              "https://doi.org/10.1038/ncomms7430"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020677392", 
              "https://doi.org/10.1038/ncomms10672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/08927029608024059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022152628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jallcom.2016.01.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022881708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023866552", 
              "https://doi.org/10.1038/ncomms8381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5ee00751h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024019114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5ee03761a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024134328"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2cp42181j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024195967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1215868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028544260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.6b03714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031871795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms8493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037289874", 
              "https://doi.org/10.1038/ncomms8493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201604315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039310956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1141483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044393965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-3093(95)00355-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046270504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c4nr00783b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046846027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050119463", 
              "https://doi.org/10.1038/nchem.1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nanoen.2016.06.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050256769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja404523s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051728651"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja5120908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055857180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jacs.6b05940", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055875835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp4076355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056096949"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.77.3865", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814179"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.1396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.78.1396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060814744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128710", 
              "https://doi.org/10.1038/nchem.2740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128710", 
              "https://doi.org/10.1038/nchem.2740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128710", 
              "https://doi.org/10.1038/nchem.2740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.2740", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128710", 
              "https://doi.org/10.1038/nchem.2740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085019163", 
              "https://doi.org/10.1038/ncomms15113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/admi.201700171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085434719"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Lacking strategies to simultaneously address the intrinsic activity, site density, electrical transport, and stability problems of chalcogels is restricting their application in catalytic hydrogen production. Herein, we resolve these challenges concurrently through chemically activating the molybdenum disulfide (MoS2) surface basal plane by doping with a low content of atomic palladium using a spontaneous interfacial redox technique. Palladium substitution occurs at the molybdenum site, simultaneously introducing sulfur vacancy and converting the 2H into the stabilized 1T structure. Theoretical calculations demonstrate the sulfur atoms next to the palladium sites exhibit low hydrogen adsorption energy at -0.02\u2009eV. The final MoS2 doped with only 1wt% of palladium demonstrates exchange current density of 805\u2009\u03bcA\u2009cm-2 and 78\u2009mV overpotential at 10\u2009mA\u2009cm-2, accompanied by a good stability. The combined advantages of our surface activating technique open the possibility of manipulating the catalytic performance of MoS2 to rival platinum.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-018-04501-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution", 
        "pagination": "2120", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8c8bf87da21ec3e46240336ba1514865e9d5e8a380e086cd490f532f0c880546"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29844358"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-018-04501-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104200799"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-018-04501-4", 
          "https://app.dimensions.ai/details/publication/pub.1104200799"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T20:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-018-04501-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    301 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-018-04501-4 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N247c9e00413f45bbb0aba897be7ecabd
    4 schema:citation sg:pub.10.1038/nchem.1589
    5 sg:pub.10.1038/nchem.2740
    6 sg:pub.10.1038/ncomms10672
    7 sg:pub.10.1038/ncomms15113
    8 sg:pub.10.1038/ncomms3995
    9 sg:pub.10.1038/ncomms6982
    10 sg:pub.10.1038/ncomms7430
    11 sg:pub.10.1038/ncomms8381
    12 sg:pub.10.1038/ncomms8493
    13 sg:pub.10.1038/nmat3439
    14 sg:pub.10.1038/nmat4564
    15 sg:pub.10.1038/nmat4660
    16 sg:pub.10.1038/nnano.2015.40
    17 https://doi.org/10.1002/adma.201504024
    18 https://doi.org/10.1002/admi.201700171
    19 https://doi.org/10.1002/anie.201604315
    20 https://doi.org/10.1016/0022-3093(95)00355-x
    21 https://doi.org/10.1016/0039-6028(96)80007-0
    22 https://doi.org/10.1016/j.chemphys.2014.02.014
    23 https://doi.org/10.1016/j.disc.2008.01.002
    24 https://doi.org/10.1016/j.jallcom.2016.01.014
    25 https://doi.org/10.1016/j.nanoen.2016.06.037
    26 https://doi.org/10.1021/ja0504690
    27 https://doi.org/10.1021/ja404523s
    28 https://doi.org/10.1021/ja5120908
    29 https://doi.org/10.1021/jacs.6b03714
    30 https://doi.org/10.1021/jacs.6b05940
    31 https://doi.org/10.1021/jp4076355
    32 https://doi.org/10.1021/nl400258t
    33 https://doi.org/10.1021/nl404444k
    34 https://doi.org/10.1039/c2cp42181j
    35 https://doi.org/10.1039/c3nr04975b
    36 https://doi.org/10.1039/c3nr06072a
    37 https://doi.org/10.1039/c4nr00783b
    38 https://doi.org/10.1039/c5ee00751h
    39 https://doi.org/10.1039/c5ee03761a
    40 https://doi.org/10.1039/c6ta06174e
    41 https://doi.org/10.1080/08927029608024059
    42 https://doi.org/10.1088/0953-8984/8/47/022
    43 https://doi.org/10.1103/physrevlett.77.3865
    44 https://doi.org/10.1103/physrevlett.78.1396
    45 https://doi.org/10.1103/physrevlett.80.890
    46 https://doi.org/10.1126/science.1141483
    47 https://doi.org/10.1126/science.1215868
    48 schema:datePublished 2018-12
    49 schema:datePublishedReg 2018-12-01
    50 schema:description Lacking strategies to simultaneously address the intrinsic activity, site density, electrical transport, and stability problems of chalcogels is restricting their application in catalytic hydrogen production. Herein, we resolve these challenges concurrently through chemically activating the molybdenum disulfide (MoS<sub>2</sub>) surface basal plane by doping with a low content of atomic palladium using a spontaneous interfacial redox technique. Palladium substitution occurs at the molybdenum site, simultaneously introducing sulfur vacancy and converting the 2H into the stabilized 1T structure. Theoretical calculations demonstrate the sulfur atoms next to the palladium sites exhibit low hydrogen adsorption energy at -0.02 eV. The final MoS<sub>2</sub> doped with only 1wt% of palladium demonstrates exchange current density of 805 μA cm<sup>-2</sup> and 78 mV overpotential at 10 mA cm<sup>-2</sup>, accompanied by a good stability. The combined advantages of our surface activating technique open the possibility of manipulating the catalytic performance of MoS<sub>2</sub> to rival platinum.
    51 schema:genre research_article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree true
    54 schema:isPartOf N4dd68e9789664665adc8ac866982a561
    55 Naf1aa37c56ef4db3b43d45a201e3ae86
    56 sg:journal.1043282
    57 schema:name Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution
    58 schema:pagination 2120
    59 schema:productId N71543781098e4a26857eb029c8924f2b
    60 N8b508c3944d9438599c5dc998f9f5b35
    61 N94f6b038c3534b33bb4806ea5c82ff60
    62 Na92665dc1fa74ad49285ca0ec7859adf
    63 Nd45f1721fd17477ea151d3a5c23c335d
    64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104200799
    65 https://doi.org/10.1038/s41467-018-04501-4
    66 schema:sdDatePublished 2019-04-10T20:06
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Na845f30d50454215b1d0953ae4c88637
    69 schema:url https://www.nature.com/articles/s41467-018-04501-4
    70 sgo:license sg:explorer/license/
    71 sgo:sdDataset articles
    72 rdf:type schema:ScholarlyArticle
    73 N0a8ccff661774876bc73a4a0a347574c rdf:first sg:person.014270614451.21
    74 rdf:rest rdf:nil
    75 N247c9e00413f45bbb0aba897be7ecabd rdf:first Nc6790bd149ee44fbb625fbb3f7c7bf8e
    76 rdf:rest N68ad825b6e544f89bf02b9f23d02c60a
    77 N291137bd1b894a72b473427916b85366 rdf:first sg:person.01247406306.69
    78 rdf:rest N5459486efc694548a29afe8cd2a522f6
    79 N323152bcb5f6413f85a1f98ccf13727b rdf:first sg:person.01152170107.15
    80 rdf:rest Nc12d1ebd6752473b80b4d98260f60b93
    81 N4dd68e9789664665adc8ac866982a561 schema:volumeNumber 9
    82 rdf:type schema:PublicationVolume
    83 N5459486efc694548a29afe8cd2a522f6 rdf:first sg:person.01066252541.00
    84 rdf:rest N323152bcb5f6413f85a1f98ccf13727b
    85 N68ad825b6e544f89bf02b9f23d02c60a rdf:first sg:person.011231601305.62
    86 rdf:rest Nf072370757734c7b96655dd42237238d
    87 N7134a3a60a85449e9a38e56554d01f97 rdf:first sg:person.07660637711.30
    88 rdf:rest Ncca9bf2874174487823995fb1e9ba033
    89 N71543781098e4a26857eb029c8924f2b schema:name readcube_id
    90 schema:value 8c8bf87da21ec3e46240336ba1514865e9d5e8a380e086cd490f532f0c880546
    91 rdf:type schema:PropertyValue
    92 N78612a41acc9477ea722b2a0673d467b schema:affiliation https://www.grid.ac/institutes/grid.418741.f
    93 schema:familyName Cao
    94 schema:givenName Xinzhong
    95 rdf:type schema:Person
    96 N8b508c3944d9438599c5dc998f9f5b35 schema:name pubmed_id
    97 schema:value 29844358
    98 rdf:type schema:PropertyValue
    99 N94f6b038c3534b33bb4806ea5c82ff60 schema:name nlm_unique_id
    100 schema:value 101528555
    101 rdf:type schema:PropertyValue
    102 Na845f30d50454215b1d0953ae4c88637 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 Na92665dc1fa74ad49285ca0ec7859adf schema:name doi
    105 schema:value 10.1038/s41467-018-04501-4
    106 rdf:type schema:PropertyValue
    107 Naf1aa37c56ef4db3b43d45a201e3ae86 schema:issueNumber 1
    108 rdf:type schema:PublicationIssue
    109 Nc12d1ebd6752473b80b4d98260f60b93 rdf:first N78612a41acc9477ea722b2a0673d467b
    110 rdf:rest Nc23f14fa81bf4f2ea6da7ac231e4b473
    111 Nc23f14fa81bf4f2ea6da7ac231e4b473 rdf:first sg:person.0637347100.04
    112 rdf:rest N0a8ccff661774876bc73a4a0a347574c
    113 Nc6790bd149ee44fbb625fbb3f7c7bf8e schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
    114 schema:familyName Luo
    115 schema:givenName Zhaoyan
    116 rdf:type schema:Person
    117 Ncca9bf2874174487823995fb1e9ba033 rdf:first sg:person.012675653451.01
    118 rdf:rest N291137bd1b894a72b473427916b85366
    119 Nd45f1721fd17477ea151d3a5c23c335d schema:name dimensions_id
    120 schema:value pub.1104200799
    121 rdf:type schema:PropertyValue
    122 Nf072370757734c7b96655dd42237238d rdf:first sg:person.011340530103.41
    123 rdf:rest N7134a3a60a85449e9a38e56554d01f97
    124 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Chemical Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Physical Chemistry (incl. Structural)
    129 rdf:type schema:DefinedTerm
    130 sg:journal.1043282 schema:issn 2041-1723
    131 schema:name Nature Communications
    132 rdf:type schema:Periodical
    133 sg:person.01066252541.00 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
    134 schema:familyName Wang
    135 schema:givenName Jinlan
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066252541.00
    137 rdf:type schema:Person
    138 sg:person.011231601305.62 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    139 schema:familyName Ouyang
    140 schema:givenName Yixin
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231601305.62
    142 rdf:type schema:Person
    143 sg:person.011340530103.41 schema:affiliation https://www.grid.ac/institutes/grid.450275.1
    144 schema:familyName Zhang
    145 schema:givenName Hao
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340530103.41
    147 rdf:type schema:Person
    148 sg:person.01152170107.15 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    149 schema:familyName Tang
    150 schema:givenName Daiming
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152170107.15
    152 rdf:type schema:Person
    153 sg:person.01247406306.69 schema:affiliation https://www.grid.ac/institutes/grid.450275.1
    154 schema:familyName Jiang
    155 schema:givenName Zheng
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247406306.69
    157 rdf:type schema:Person
    158 sg:person.012675653451.01 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
    159 schema:familyName Ge
    160 schema:givenName Junjie
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675653451.01
    162 rdf:type schema:Person
    163 sg:person.014270614451.21 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
    164 schema:familyName Xing
    165 schema:givenName Wei
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270614451.21
    167 rdf:type schema:Person
    168 sg:person.0637347100.04 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
    169 schema:familyName Liu
    170 schema:givenName Changpeng
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637347100.04
    172 rdf:type schema:Person
    173 sg:person.07660637711.30 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
    174 schema:familyName Xiao
    175 schema:givenName Meiling
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660637711.30
    177 rdf:type schema:Person
    178 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
    179 https://doi.org/10.1038/nchem.1589
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nchem.2740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128710
    182 https://doi.org/10.1038/nchem.2740
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/ncomms10672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020677392
    185 https://doi.org/10.1038/ncomms10672
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/ncomms15113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085019163
    188 https://doi.org/10.1038/ncomms15113
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/ncomms3995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014167688
    191 https://doi.org/10.1038/ncomms3995
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/ncomms6982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003006397
    194 https://doi.org/10.1038/ncomms6982
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/ncomms7430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019300299
    197 https://doi.org/10.1038/ncomms7430
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/ncomms8381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023866552
    200 https://doi.org/10.1038/ncomms8381
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ncomms8493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037289874
    203 https://doi.org/10.1038/ncomms8493
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nmat3439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011433921
    206 https://doi.org/10.1038/nmat3439
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nmat4564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001714983
    209 https://doi.org/10.1038/nmat4564
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nmat4660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003218397
    212 https://doi.org/10.1038/nmat4660
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nnano.2015.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007402816
    215 https://doi.org/10.1038/nnano.2015.40
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1002/adma.201504024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008525173
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1002/admi.201700171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085434719
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1002/anie.201604315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310956
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1016/0022-3093(95)00355-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046270504
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1016/0039-6028(96)80007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012774798
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1016/j.chemphys.2014.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064909
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1016/j.disc.2008.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000983043
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1016/j.jallcom.2016.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022881708
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1016/j.nanoen.2016.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050256769
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1021/ja0504690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004107076
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1021/ja404523s schema:sameAs https://app.dimensions.ai/details/publication/pub.1051728651
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1021/ja5120908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055857180
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1021/jacs.6b03714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031871795
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1021/jacs.6b05940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055875835
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1021/jp4076355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056096949
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1021/nl400258t schema:sameAs https://app.dimensions.ai/details/publication/pub.1001201701
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1021/nl404444k schema:sameAs https://app.dimensions.ai/details/publication/pub.1007027451
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1039/c2cp42181j schema:sameAs https://app.dimensions.ai/details/publication/pub.1024195967
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1039/c3nr04975b schema:sameAs https://app.dimensions.ai/details/publication/pub.1002588829
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1039/c3nr06072a schema:sameAs https://app.dimensions.ai/details/publication/pub.1002119279
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1039/c4nr00783b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046846027
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1039/c5ee00751h schema:sameAs https://app.dimensions.ai/details/publication/pub.1024019114
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1039/c5ee03761a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024134328
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1039/c6ta06174e schema:sameAs https://app.dimensions.ai/details/publication/pub.1004206349
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1080/08927029608024059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022152628
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1088/0953-8984/8/47/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007098594
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1103/physrevlett.78.1396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814744
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1103/physrevlett.80.890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817818
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1126/science.1141483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044393965
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1126/science.1215868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028544260
    278 rdf:type schema:CreativeWork
    279 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
    280 schema:name National Institute for Materials Science, Namiki 1-1, 305-0044, Tsukuba, Ibaraki, Japan
    281 rdf:type schema:Organization
    282 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
    283 schema:name School of Physics, Southeast University, 211189, Nanjing, China
    284 rdf:type schema:Organization
    285 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
    286 schema:name School of Physics, Southeast University, 211189, Nanjing, China
    287 Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, 410081, Changsha, China
    288 rdf:type schema:Organization
    289 https://www.grid.ac/institutes/grid.418741.f schema:alternateName Institute of High Energy Physics
    290 schema:name Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
    291 rdf:type schema:Organization
    292 https://www.grid.ac/institutes/grid.450275.1 schema:alternateName Shanghai Institute of Applied Physics
    293 schema:name Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, China
    294 rdf:type schema:Organization
    295 https://www.grid.ac/institutes/grid.453213.2 schema:alternateName Changchun Institute of Applied Chemistry
    296 schema:name State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
    297 rdf:type schema:Organization
    298 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
    299 schema:name State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
    300 University of Science and Technology of China, 230026, Hefei, Anhui, China
    301 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...