Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Zhaoyan Luo, Yixin Ouyang, Hao Zhang, Meiling Xiao, Junjie Ge, Zheng Jiang, Jinlan Wang, Daiming Tang, Xinzhong Cao, Changpeng Liu, Wei Xing

ABSTRACT

Lacking strategies to simultaneously address the intrinsic activity, site density, electrical transport, and stability problems of chalcogels is restricting their application in catalytic hydrogen production. Herein, we resolve these challenges concurrently through chemically activating the molybdenum disulfide (MoS2) surface basal plane by doping with a low content of atomic palladium using a spontaneous interfacial redox technique. Palladium substitution occurs at the molybdenum site, simultaneously introducing sulfur vacancy and converting the 2H into the stabilized 1T structure. Theoretical calculations demonstrate the sulfur atoms next to the palladium sites exhibit low hydrogen adsorption energy at -0.02 eV. The final MoS2 doped with only 1wt% of palladium demonstrates exchange current density of 805 μA cm-2 and 78 mV overpotential at 10 mA cm-2, accompanied by a good stability. The combined advantages of our surface activating technique open the possibility of manipulating the catalytic performance of MoS2 to rival platinum. More... »

PAGES

2120

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4

DOI

http://dx.doi.org/10.1038/s41467-018-04501-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104200799

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29844358


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Science and Technology of China", 
          "id": "https://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China", 
            "University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Zhaoyan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "School of Physics, Southeast University, 211189, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ouyang", 
        "givenName": "Yixin", 
        "id": "sg:person.011231601305.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231601305.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.450275.1", 
          "name": [
            "Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Hao", 
        "id": "sg:person.011340530103.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340530103.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changchun Institute of Applied Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.453213.2", 
          "name": [
            "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Meiling", 
        "id": "sg:person.07660637711.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660637711.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changchun Institute of Applied Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.453213.2", 
          "name": [
            "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Junjie", 
        "id": "sg:person.012675653451.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675653451.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.450275.1", 
          "name": [
            "Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Zheng", 
        "id": "sg:person.01247406306.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247406306.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411427.5", 
          "name": [
            "School of Physics, Southeast University, 211189, Nanjing, China", 
            "Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, 410081, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jinlan", 
        "id": "sg:person.01066252541.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066252541.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Namiki 1-1, 305-0044, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Daiming", 
        "id": "sg:person.01152170107.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152170107.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of High Energy Physics", 
          "id": "https://www.grid.ac/institutes/grid.418741.f", 
          "name": [
            "Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Xinzhong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changchun Institute of Applied Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.453213.2", 
          "name": [
            "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Changpeng", 
        "id": "sg:person.0637347100.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637347100.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Changchun Institute of Applied Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.453213.2", 
          "name": [
            "State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Wei", 
        "id": "sg:person.014270614451.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270614451.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.disc.2008.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000983043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl400258t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001201701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001714983", 
          "https://doi.org/10.1038/nmat4564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr06072a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002119279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr04975b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002588829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003006397", 
          "https://doi.org/10.1038/ncomms6982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003218397", 
          "https://doi.org/10.1038/nmat4660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0504690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004107076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja0504690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004107076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ta06174e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004206349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl404444k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007027451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/8/47/022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007098594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007402816", 
          "https://doi.org/10.1038/nnano.2015.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201504024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008525173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011433921", 
          "https://doi.org/10.1038/nmat3439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(96)80007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012774798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014167688", 
          "https://doi.org/10.1038/ncomms3995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemphys.2014.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018064909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019300299", 
          "https://doi.org/10.1038/ncomms7430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020677392", 
          "https://doi.org/10.1038/ncomms10672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08927029608024059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022152628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022881708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023866552", 
          "https://doi.org/10.1038/ncomms8381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ee00751h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024019114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ee03761a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024134328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cp42181j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024195967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1215868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028544260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b03714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031871795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037289874", 
          "https://doi.org/10.1038/ncomms8493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201604315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044393965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(95)00355-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046270504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr00783b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046846027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119463", 
          "https://doi.org/10.1038/nchem.1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2016.06.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050256769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja404523s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051728651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja5120908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055857180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.6b05940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055875835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp4076355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056096949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128710", 
          "https://doi.org/10.1038/nchem.2740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128710", 
          "https://doi.org/10.1038/nchem.2740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128710", 
          "https://doi.org/10.1038/nchem.2740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084128710", 
          "https://doi.org/10.1038/nchem.2740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085019163", 
          "https://doi.org/10.1038/ncomms15113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/admi.201700171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085434719"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Lacking strategies to simultaneously address the intrinsic activity, site density, electrical transport, and stability problems of chalcogels is restricting their application in catalytic hydrogen production. Herein, we resolve these challenges concurrently through chemically activating the molybdenum disulfide (MoS2) surface basal plane by doping with a low content of atomic palladium using a spontaneous interfacial redox technique. Palladium substitution occurs at the molybdenum site, simultaneously introducing sulfur vacancy and converting the 2H into the stabilized 1T structure. Theoretical calculations demonstrate the sulfur atoms next to the palladium sites exhibit low hydrogen adsorption energy at -0.02\u2009eV. The final MoS2 doped with only 1wt% of palladium demonstrates exchange current density of 805\u2009\u03bcA\u2009cm-2 and 78\u2009mV overpotential at 10\u2009mA\u2009cm-2, accompanied by a good stability. The combined advantages of our surface activating technique open the possibility of manipulating the catalytic performance of MoS2 to rival platinum.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-04501-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution", 
    "pagination": "2120", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c8bf87da21ec3e46240336ba1514865e9d5e8a380e086cd490f532f0c880546"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29844358"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-04501-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104200799"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-04501-4", 
      "https://app.dimensions.ai/details/publication/pub.1104200799"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000567.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-04501-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-04501-4'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      73 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-04501-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf243cc453ffc48e8a80efe3125ddeb76
4 schema:citation sg:pub.10.1038/nchem.1589
5 sg:pub.10.1038/nchem.2740
6 sg:pub.10.1038/ncomms10672
7 sg:pub.10.1038/ncomms15113
8 sg:pub.10.1038/ncomms3995
9 sg:pub.10.1038/ncomms6982
10 sg:pub.10.1038/ncomms7430
11 sg:pub.10.1038/ncomms8381
12 sg:pub.10.1038/ncomms8493
13 sg:pub.10.1038/nmat3439
14 sg:pub.10.1038/nmat4564
15 sg:pub.10.1038/nmat4660
16 sg:pub.10.1038/nnano.2015.40
17 https://doi.org/10.1002/adma.201504024
18 https://doi.org/10.1002/admi.201700171
19 https://doi.org/10.1002/anie.201604315
20 https://doi.org/10.1016/0022-3093(95)00355-x
21 https://doi.org/10.1016/0039-6028(96)80007-0
22 https://doi.org/10.1016/j.chemphys.2014.02.014
23 https://doi.org/10.1016/j.disc.2008.01.002
24 https://doi.org/10.1016/j.jallcom.2016.01.014
25 https://doi.org/10.1016/j.nanoen.2016.06.037
26 https://doi.org/10.1021/ja0504690
27 https://doi.org/10.1021/ja404523s
28 https://doi.org/10.1021/ja5120908
29 https://doi.org/10.1021/jacs.6b03714
30 https://doi.org/10.1021/jacs.6b05940
31 https://doi.org/10.1021/jp4076355
32 https://doi.org/10.1021/nl400258t
33 https://doi.org/10.1021/nl404444k
34 https://doi.org/10.1039/c2cp42181j
35 https://doi.org/10.1039/c3nr04975b
36 https://doi.org/10.1039/c3nr06072a
37 https://doi.org/10.1039/c4nr00783b
38 https://doi.org/10.1039/c5ee00751h
39 https://doi.org/10.1039/c5ee03761a
40 https://doi.org/10.1039/c6ta06174e
41 https://doi.org/10.1080/08927029608024059
42 https://doi.org/10.1088/0953-8984/8/47/022
43 https://doi.org/10.1103/physrevlett.77.3865
44 https://doi.org/10.1103/physrevlett.78.1396
45 https://doi.org/10.1103/physrevlett.80.890
46 https://doi.org/10.1126/science.1141483
47 https://doi.org/10.1126/science.1215868
48 schema:datePublished 2018-12
49 schema:datePublishedReg 2018-12-01
50 schema:description Lacking strategies to simultaneously address the intrinsic activity, site density, electrical transport, and stability problems of chalcogels is restricting their application in catalytic hydrogen production. Herein, we resolve these challenges concurrently through chemically activating the molybdenum disulfide (MoS<sub>2</sub>) surface basal plane by doping with a low content of atomic palladium using a spontaneous interfacial redox technique. Palladium substitution occurs at the molybdenum site, simultaneously introducing sulfur vacancy and converting the 2H into the stabilized 1T structure. Theoretical calculations demonstrate the sulfur atoms next to the palladium sites exhibit low hydrogen adsorption energy at -0.02 eV. The final MoS<sub>2</sub> doped with only 1wt% of palladium demonstrates exchange current density of 805 μA cm<sup>-2</sup> and 78 mV overpotential at 10 mA cm<sup>-2</sup>, accompanied by a good stability. The combined advantages of our surface activating technique open the possibility of manipulating the catalytic performance of MoS<sub>2</sub> to rival platinum.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf Nabe43564dabf4e419d9674013aea75bc
55 Nb48fb35eba434ae5b7d62d5fe9357245
56 sg:journal.1043282
57 schema:name Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution
58 schema:pagination 2120
59 schema:productId N91ab90549e9b418a87bce532cb2bc0d5
60 Nc1ee70b9f3424441b80d1b8de15c0eda
61 Nd1bea56e87f9475a9cd7e10422962b32
62 Ne2034efde9714a8d9ce98305e1279fee
63 Nf7de4f03d51b47b18c4582753cb3180b
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104200799
65 https://doi.org/10.1038/s41467-018-04501-4
66 schema:sdDatePublished 2019-04-10T20:06
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nec5888e5eaa34cc391ecb001d6507575
69 schema:url https://www.nature.com/articles/s41467-018-04501-4
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N1093aa16052b4e04a0d09c9116e7d260 rdf:first sg:person.011340530103.41
74 rdf:rest N934921b9bc894baa8e29730911b88d75
75 N358007f8653a4ad0820d6b2803090e55 rdf:first sg:person.011231601305.62
76 rdf:rest N1093aa16052b4e04a0d09c9116e7d260
77 N44825b3ba10344e2bb0fed692ef0a39a rdf:first N88a3ff0ffc78442bb0872df72a8ee516
78 rdf:rest Nc19c02be4de94668b6b422b76a08a13c
79 N6f832d5fe26842799f7f910cf07dbd10 rdf:first sg:person.012675653451.01
80 rdf:rest Na58fb20bc197473db564456bfaeb8d41
81 N88839d063eb84efc884e716439bc0b1f rdf:first sg:person.01066252541.00
82 rdf:rest Nebf63dc2e09f4868a1f0ef51aa5ecf15
83 N88a3ff0ffc78442bb0872df72a8ee516 schema:affiliation https://www.grid.ac/institutes/grid.418741.f
84 schema:familyName Cao
85 schema:givenName Xinzhong
86 rdf:type schema:Person
87 N8b76b88a77a840aa8ca10dd288b71015 schema:affiliation https://www.grid.ac/institutes/grid.59053.3a
88 schema:familyName Luo
89 schema:givenName Zhaoyan
90 rdf:type schema:Person
91 N91ab90549e9b418a87bce532cb2bc0d5 schema:name doi
92 schema:value 10.1038/s41467-018-04501-4
93 rdf:type schema:PropertyValue
94 N934921b9bc894baa8e29730911b88d75 rdf:first sg:person.07660637711.30
95 rdf:rest N6f832d5fe26842799f7f910cf07dbd10
96 N99d3562bb32d4c29b78847d9412dfd78 rdf:first sg:person.014270614451.21
97 rdf:rest rdf:nil
98 Na58fb20bc197473db564456bfaeb8d41 rdf:first sg:person.01247406306.69
99 rdf:rest N88839d063eb84efc884e716439bc0b1f
100 Nabe43564dabf4e419d9674013aea75bc schema:volumeNumber 9
101 rdf:type schema:PublicationVolume
102 Nb48fb35eba434ae5b7d62d5fe9357245 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 Nc19c02be4de94668b6b422b76a08a13c rdf:first sg:person.0637347100.04
105 rdf:rest N99d3562bb32d4c29b78847d9412dfd78
106 Nc1ee70b9f3424441b80d1b8de15c0eda schema:name nlm_unique_id
107 schema:value 101528555
108 rdf:type schema:PropertyValue
109 Nd1bea56e87f9475a9cd7e10422962b32 schema:name readcube_id
110 schema:value 8c8bf87da21ec3e46240336ba1514865e9d5e8a380e086cd490f532f0c880546
111 rdf:type schema:PropertyValue
112 Ne2034efde9714a8d9ce98305e1279fee schema:name dimensions_id
113 schema:value pub.1104200799
114 rdf:type schema:PropertyValue
115 Nebf63dc2e09f4868a1f0ef51aa5ecf15 rdf:first sg:person.01152170107.15
116 rdf:rest N44825b3ba10344e2bb0fed692ef0a39a
117 Nec5888e5eaa34cc391ecb001d6507575 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 Nf243cc453ffc48e8a80efe3125ddeb76 rdf:first N8b76b88a77a840aa8ca10dd288b71015
120 rdf:rest N358007f8653a4ad0820d6b2803090e55
121 Nf7de4f03d51b47b18c4582753cb3180b schema:name pubmed_id
122 schema:value 29844358
123 rdf:type schema:PropertyValue
124 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
125 schema:name Chemical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
128 schema:name Physical Chemistry (incl. Structural)
129 rdf:type schema:DefinedTerm
130 sg:journal.1043282 schema:issn 2041-1723
131 schema:name Nature Communications
132 rdf:type schema:Periodical
133 sg:person.01066252541.00 schema:affiliation https://www.grid.ac/institutes/grid.411427.5
134 schema:familyName Wang
135 schema:givenName Jinlan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066252541.00
137 rdf:type schema:Person
138 sg:person.011231601305.62 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
139 schema:familyName Ouyang
140 schema:givenName Yixin
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231601305.62
142 rdf:type schema:Person
143 sg:person.011340530103.41 schema:affiliation https://www.grid.ac/institutes/grid.450275.1
144 schema:familyName Zhang
145 schema:givenName Hao
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011340530103.41
147 rdf:type schema:Person
148 sg:person.01152170107.15 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
149 schema:familyName Tang
150 schema:givenName Daiming
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152170107.15
152 rdf:type schema:Person
153 sg:person.01247406306.69 schema:affiliation https://www.grid.ac/institutes/grid.450275.1
154 schema:familyName Jiang
155 schema:givenName Zheng
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247406306.69
157 rdf:type schema:Person
158 sg:person.012675653451.01 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
159 schema:familyName Ge
160 schema:givenName Junjie
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012675653451.01
162 rdf:type schema:Person
163 sg:person.014270614451.21 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
164 schema:familyName Xing
165 schema:givenName Wei
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014270614451.21
167 rdf:type schema:Person
168 sg:person.0637347100.04 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
169 schema:familyName Liu
170 schema:givenName Changpeng
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637347100.04
172 rdf:type schema:Person
173 sg:person.07660637711.30 schema:affiliation https://www.grid.ac/institutes/grid.453213.2
174 schema:familyName Xiao
175 schema:givenName Meiling
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660637711.30
177 rdf:type schema:Person
178 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
179 https://doi.org/10.1038/nchem.1589
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nchem.2740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128710
182 https://doi.org/10.1038/nchem.2740
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/ncomms10672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020677392
185 https://doi.org/10.1038/ncomms10672
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/ncomms15113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085019163
188 https://doi.org/10.1038/ncomms15113
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ncomms3995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014167688
191 https://doi.org/10.1038/ncomms3995
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ncomms6982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003006397
194 https://doi.org/10.1038/ncomms6982
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ncomms7430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019300299
197 https://doi.org/10.1038/ncomms7430
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ncomms8381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023866552
200 https://doi.org/10.1038/ncomms8381
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/ncomms8493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037289874
203 https://doi.org/10.1038/ncomms8493
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nmat3439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011433921
206 https://doi.org/10.1038/nmat3439
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nmat4564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001714983
209 https://doi.org/10.1038/nmat4564
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nmat4660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003218397
212 https://doi.org/10.1038/nmat4660
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nnano.2015.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007402816
215 https://doi.org/10.1038/nnano.2015.40
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1002/adma.201504024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008525173
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1002/admi.201700171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085434719
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1002/anie.201604315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310956
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1016/0022-3093(95)00355-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046270504
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1016/0039-6028(96)80007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012774798
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1016/j.chemphys.2014.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064909
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1016/j.disc.2008.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000983043
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.jallcom.2016.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022881708
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.nanoen.2016.06.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050256769
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1021/ja0504690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004107076
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1021/ja404523s schema:sameAs https://app.dimensions.ai/details/publication/pub.1051728651
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1021/ja5120908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055857180
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1021/jacs.6b03714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031871795
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1021/jacs.6b05940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055875835
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/jp4076355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056096949
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/nl400258t schema:sameAs https://app.dimensions.ai/details/publication/pub.1001201701
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/nl404444k schema:sameAs https://app.dimensions.ai/details/publication/pub.1007027451
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1039/c2cp42181j schema:sameAs https://app.dimensions.ai/details/publication/pub.1024195967
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1039/c3nr04975b schema:sameAs https://app.dimensions.ai/details/publication/pub.1002588829
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1039/c3nr06072a schema:sameAs https://app.dimensions.ai/details/publication/pub.1002119279
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1039/c4nr00783b schema:sameAs https://app.dimensions.ai/details/publication/pub.1046846027
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1039/c5ee00751h schema:sameAs https://app.dimensions.ai/details/publication/pub.1024019114
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1039/c5ee03761a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024134328
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1039/c6ta06174e schema:sameAs https://app.dimensions.ai/details/publication/pub.1004206349
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1080/08927029608024059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022152628
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1088/0953-8984/8/47/022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007098594
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1103/physrevlett.78.1396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814744
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1103/physrevlett.80.890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817818
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1126/science.1141483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044393965
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1126/science.1215868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028544260
278 rdf:type schema:CreativeWork
279 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
280 schema:name National Institute for Materials Science, Namiki 1-1, 305-0044, Tsukuba, Ibaraki, Japan
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
283 schema:name School of Physics, Southeast University, 211189, Nanjing, China
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.411427.5 schema:alternateName Hunan Normal University
286 schema:name School of Physics, Southeast University, 211189, Nanjing, China
287 Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, 410081, Changsha, China
288 rdf:type schema:Organization
289 https://www.grid.ac/institutes/grid.418741.f schema:alternateName Institute of High Energy Physics
290 schema:name Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
291 rdf:type schema:Organization
292 https://www.grid.ac/institutes/grid.450275.1 schema:alternateName Shanghai Institute of Applied Physics
293 schema:name Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201204, Shanghai, China
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.453213.2 schema:alternateName Changchun Institute of Applied Chemistry
296 schema:name State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.59053.3a schema:alternateName University of Science and Technology of China
299 schema:name State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
300 University of Science and Technology of China, 230026, Hefei, Anhui, China
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...