Ultrastable metallic glasses formed on cold substrates View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04-11

AUTHORS

P. Luo, C. R. Cao, F. Zhu, Y. M. Lv, Y. H. Liu, P. Wen, H. Y. Bai, G. Vaughan, M. di Michiel, B. Ruta, W. H. Wang

ABSTRACT

Vitrification from physical vapor deposition is known to be an efficient way for tuning the kinetic and thermodynamic stability of glasses and significantly improve their properties. There is a general consensus that preparing stable glasses requires the use of high substrate temperatures close to the glass transition one, Tg. Here, we challenge this empirical rule by showing the formation of Zr-based ultrastable metallic glasses (MGs) at room temperature, i.e., with a substrate temperature of only 0.43Tg. By carefully controlling the deposition rate, we can improve the stability of the obtained glasses to higher values. In contrast to conventional quenched glasses, the ultrastable MGs exhibit a large increase of Tg of ∼60 K, stronger resistance against crystallization, and more homogeneous structure with less order at longer distances. Our study circumvents the limitation of substrate temperature for developing ultrastable glasses, and provides deeper insight into glasses stability and their surface dynamics. More... »

PAGES

1389

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-03656-4

DOI

http://dx.doi.org/10.1038/s41467-018-03656-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103225125

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29643346


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "P.", 
        "id": "sg:person.01053144263.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053144263.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "C. R.", 
        "id": "sg:person.01147232607.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147232607.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China", 
          "id": "http://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "F.", 
        "id": "sg:person.01002677477.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Y. M.", 
        "id": "sg:person.010213506655.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010213506655.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Y. H.", 
        "id": "sg:person.013014771543.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014771543.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.458438.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wen", 
        "givenName": "P.", 
        "id": "sg:person.01303455263.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303455263.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "H. Y.", 
        "id": "sg:person.0640310271.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.5398.7", 
          "name": [
            "ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vaughan", 
        "givenName": "G.", 
        "id": "sg:person.013402076007.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402076007.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France", 
          "id": "http://www.grid.ac/institutes/grid.5398.7", 
          "name": [
            "ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "di Michiel", 
        "givenName": "M.", 
        "id": "sg:person.01307260750.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307260750.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Univ Lyon, Universit\u00e9 Claude Bernard Lyon 1, CNRS, Institut Lumi\u00e8re Mati\u00e8re, 69622, Villeurbanne, France", 
          "id": "http://www.grid.ac/institutes/grid.436142.6", 
          "name": [
            "ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France", 
            "Univ Lyon, Universit\u00e9 Claude Bernard Lyon 1, CNRS, Institut Lumi\u00e8re Mati\u00e8re, 69622, Villeurbanne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruta", 
        "givenName": "B.", 
        "id": "sg:person.01354725600.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354725600.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences, 100049, Beijing, China", 
          "id": "http://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "W. H.", 
        "id": "sg:person.01363714371.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014137048", 
          "https://doi.org/10.1038/nmat3521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049615186", 
          "https://doi.org/10.1038/ncomms11516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046208120", 
          "https://doi.org/10.1038/ncomms13062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019027265", 
          "https://doi.org/10.1038/nmat3234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355581", 
          "https://doi.org/10.1038/35065704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-11", 
    "datePublishedReg": "2018-04-11", 
    "description": "Vitrification from physical vapor deposition is known to be an efficient way for tuning the kinetic and thermodynamic stability of glasses and significantly improve their properties. There is a general consensus that preparing stable glasses requires the use of high substrate temperatures close to the glass transition one, Tg. Here, we challenge this empirical rule by showing the formation of Zr-based ultrastable metallic glasses (MGs) at room temperature, i.e., with a substrate temperature of only 0.43Tg. By carefully controlling the deposition rate, we can improve the stability of the obtained glasses to higher values. In contrast to conventional quenched glasses, the ultrastable MGs exhibit a large increase of Tg of \u223c60\u2009K, stronger resistance against crystallization, and more homogeneous structure with less order at longer distances. Our study circumvents the limitation of substrate temperature for developing ultrastable glasses, and provides deeper insight into glasses stability and their surface dynamics.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-03656-4", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8265399", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8258645", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8133842", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "ultrastable metallic glasses", 
      "substrate temperature", 
      "high substrate temperature", 
      "glass transition one", 
      "physical vapor deposition", 
      "ultrastable glasses", 
      "stable glasses", 
      "vapor deposition", 
      "glass stability", 
      "metallic glasses", 
      "surface dynamics", 
      "deposition rate", 
      "transition one", 
      "glass", 
      "room temperature", 
      "cold substrate", 
      "thermodynamic stability", 
      "long distances", 
      "less order", 
      "temperature", 
      "empirical rules", 
      "formation of Zr", 
      "deeper insight", 
      "deposition", 
      "substrate", 
      "dynamics", 
      "homogeneous structure", 
      "distance", 
      "properties", 
      "structure", 
      "higher values", 
      "stability", 
      "Zr", 
      "efficient way", 
      "crystallization", 
      "formation", 
      "large increase", 
      "order", 
      "one", 
      "values", 
      "contrast", 
      "Tg", 
      "vitrification", 
      "way", 
      "strong resistance", 
      "increase", 
      "limitations", 
      "insights", 
      "rate", 
      "rules", 
      "use", 
      "general consensus", 
      "study", 
      "resistance", 
      "consensus"
    ], 
    "name": "Ultrastable metallic glasses formed on cold substrates", 
    "pagination": "1389", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103225125"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-03656-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29643346"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-03656-4", 
      "https://app.dimensions.ai/details/publication/pub.1103225125"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_775.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-03656-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03656-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03656-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03656-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03656-4'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      85 URIs      72 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-03656-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na034dda42124460a9e8c3c2873f2320b
4 schema:citation sg:pub.10.1038/35065704
5 sg:pub.10.1038/ncomms11516
6 sg:pub.10.1038/ncomms13062
7 sg:pub.10.1038/nmat3234
8 sg:pub.10.1038/nmat3521
9 schema:datePublished 2018-04-11
10 schema:datePublishedReg 2018-04-11
11 schema:description Vitrification from physical vapor deposition is known to be an efficient way for tuning the kinetic and thermodynamic stability of glasses and significantly improve their properties. There is a general consensus that preparing stable glasses requires the use of high substrate temperatures close to the glass transition one, Tg. Here, we challenge this empirical rule by showing the formation of Zr-based ultrastable metallic glasses (MGs) at room temperature, i.e., with a substrate temperature of only 0.43Tg. By carefully controlling the deposition rate, we can improve the stability of the obtained glasses to higher values. In contrast to conventional quenched glasses, the ultrastable MGs exhibit a large increase of Tg of ∼60 K, stronger resistance against crystallization, and more homogeneous structure with less order at longer distances. Our study circumvents the limitation of substrate temperature for developing ultrastable glasses, and provides deeper insight into glasses stability and their surface dynamics.
12 schema:genre article
13 schema:isAccessibleForFree true
14 schema:isPartOf N0cd913e3c41642dc9415616d2ea2fa99
15 Nbabe2b70e6cf4323b178975d5baf4f53
16 sg:journal.1043282
17 schema:keywords Tg
18 Zr
19 cold substrate
20 consensus
21 contrast
22 crystallization
23 deeper insight
24 deposition
25 deposition rate
26 distance
27 dynamics
28 efficient way
29 empirical rules
30 formation
31 formation of Zr
32 general consensus
33 glass
34 glass stability
35 glass transition one
36 high substrate temperature
37 higher values
38 homogeneous structure
39 increase
40 insights
41 large increase
42 less order
43 limitations
44 long distances
45 metallic glasses
46 one
47 order
48 physical vapor deposition
49 properties
50 rate
51 resistance
52 room temperature
53 rules
54 stability
55 stable glasses
56 strong resistance
57 structure
58 study
59 substrate
60 substrate temperature
61 surface dynamics
62 temperature
63 thermodynamic stability
64 transition one
65 ultrastable glasses
66 ultrastable metallic glasses
67 use
68 values
69 vapor deposition
70 vitrification
71 way
72 schema:name Ultrastable metallic glasses formed on cold substrates
73 schema:pagination 1389
74 schema:productId N1790cdf2ef7144d293813a523fdaa912
75 N2e59c103d8604c76b139ae6d1d861e3c
76 N6d23ad074dae441ba48e282250942387
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103225125
78 https://doi.org/10.1038/s41467-018-03656-4
79 schema:sdDatePublished 2022-09-02T16:02
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N6c069fa104b5450eb085d7d9f83d23bd
82 schema:url https://doi.org/10.1038/s41467-018-03656-4
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N057d0434fea245d9b0d16262264ec1f6 rdf:first sg:person.013014771543.17
87 rdf:rest N7dcc773d09d2428ba888e392b09cbcf3
88 N06a11ad438d841fea12eb5ed3c60826f rdf:first sg:person.01002677477.73
89 rdf:rest N974ac7e95f2140d5962faabc3ca7a8ee
90 N0cd913e3c41642dc9415616d2ea2fa99 schema:volumeNumber 9
91 rdf:type schema:PublicationVolume
92 N1790cdf2ef7144d293813a523fdaa912 schema:name pubmed_id
93 schema:value 29643346
94 rdf:type schema:PropertyValue
95 N2e59c103d8604c76b139ae6d1d861e3c schema:name dimensions_id
96 schema:value pub.1103225125
97 rdf:type schema:PropertyValue
98 N30c59d552bcd4f8ba023b37539a832ef rdf:first sg:person.01354725600.34
99 rdf:rest N9bd1e3fdd6144786ab06fab35106a587
100 N598ac84f6199410c89dec7d6656d4f0e rdf:first sg:person.01147232607.20
101 rdf:rest N06a11ad438d841fea12eb5ed3c60826f
102 N6911db1d245449018cbb20b2bcc49e77 rdf:first sg:person.013402076007.90
103 rdf:rest N8b220c0e8a954cf3a7c2d7ceef93ea8e
104 N6c069fa104b5450eb085d7d9f83d23bd schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N6d23ad074dae441ba48e282250942387 schema:name doi
107 schema:value 10.1038/s41467-018-03656-4
108 rdf:type schema:PropertyValue
109 N7dcc773d09d2428ba888e392b09cbcf3 rdf:first sg:person.01303455263.29
110 rdf:rest Ne2650bd9c47043cdafc160a672e1ab73
111 N8b220c0e8a954cf3a7c2d7ceef93ea8e rdf:first sg:person.01307260750.59
112 rdf:rest N30c59d552bcd4f8ba023b37539a832ef
113 N974ac7e95f2140d5962faabc3ca7a8ee rdf:first sg:person.010213506655.05
114 rdf:rest N057d0434fea245d9b0d16262264ec1f6
115 N9bd1e3fdd6144786ab06fab35106a587 rdf:first sg:person.01363714371.28
116 rdf:rest rdf:nil
117 Na034dda42124460a9e8c3c2873f2320b rdf:first sg:person.01053144263.81
118 rdf:rest N598ac84f6199410c89dec7d6656d4f0e
119 Nbabe2b70e6cf4323b178975d5baf4f53 schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 Ne2650bd9c47043cdafc160a672e1ab73 rdf:first sg:person.0640310271.16
122 rdf:rest N6911db1d245449018cbb20b2bcc49e77
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
127 schema:name Materials Engineering
128 rdf:type schema:DefinedTerm
129 sg:grant.8133842 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03656-4
130 rdf:type schema:MonetaryGrant
131 sg:grant.8258645 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03656-4
132 rdf:type schema:MonetaryGrant
133 sg:grant.8265399 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03656-4
134 rdf:type schema:MonetaryGrant
135 sg:journal.1043282 schema:issn 2041-1723
136 schema:name Nature Communications
137 schema:publisher Springer Nature
138 rdf:type schema:Periodical
139 sg:person.01002677477.73 schema:affiliation grid-institutes:grid.16821.3c
140 schema:familyName Zhu
141 schema:givenName F.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01002677477.73
143 rdf:type schema:Person
144 sg:person.010213506655.05 schema:affiliation grid-institutes:grid.410726.6
145 schema:familyName Lv
146 schema:givenName Y. M.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010213506655.05
148 rdf:type schema:Person
149 sg:person.01053144263.81 schema:affiliation grid-institutes:grid.410726.6
150 schema:familyName Luo
151 schema:givenName P.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053144263.81
153 rdf:type schema:Person
154 sg:person.01147232607.20 schema:affiliation grid-institutes:grid.410726.6
155 schema:familyName Cao
156 schema:givenName C. R.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147232607.20
158 rdf:type schema:Person
159 sg:person.013014771543.17 schema:affiliation grid-institutes:grid.410726.6
160 schema:familyName Liu
161 schema:givenName Y. H.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013014771543.17
163 rdf:type schema:Person
164 sg:person.01303455263.29 schema:affiliation grid-institutes:grid.458438.6
165 schema:familyName Wen
166 schema:givenName P.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303455263.29
168 rdf:type schema:Person
169 sg:person.01307260750.59 schema:affiliation grid-institutes:grid.5398.7
170 schema:familyName di Michiel
171 schema:givenName M.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307260750.59
173 rdf:type schema:Person
174 sg:person.013402076007.90 schema:affiliation grid-institutes:grid.5398.7
175 schema:familyName Vaughan
176 schema:givenName G.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013402076007.90
178 rdf:type schema:Person
179 sg:person.01354725600.34 schema:affiliation grid-institutes:grid.436142.6
180 schema:familyName Ruta
181 schema:givenName B.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354725600.34
183 rdf:type schema:Person
184 sg:person.01363714371.28 schema:affiliation grid-institutes:grid.410726.6
185 schema:familyName Wang
186 schema:givenName W. H.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363714371.28
188 rdf:type schema:Person
189 sg:person.0640310271.16 schema:affiliation grid-institutes:grid.410726.6
190 schema:familyName Bai
191 schema:givenName H. Y.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640310271.16
193 rdf:type schema:Person
194 sg:pub.10.1038/35065704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355581
195 https://doi.org/10.1038/35065704
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/ncomms11516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049615186
198 https://doi.org/10.1038/ncomms11516
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/ncomms13062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046208120
201 https://doi.org/10.1038/ncomms13062
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nmat3234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019027265
204 https://doi.org/10.1038/nmat3234
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nmat3521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014137048
207 https://doi.org/10.1038/nmat3521
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.16821.3c schema:alternateName State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
210 schema:name State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
211 rdf:type schema:Organization
212 grid-institutes:grid.410726.6 schema:alternateName University of Chinese Academy of Sciences, 100049, Beijing, China
213 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
214 University of Chinese Academy of Sciences, 100049, Beijing, China
215 rdf:type schema:Organization
216 grid-institutes:grid.436142.6 schema:alternateName Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
217 schema:name ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France
218 Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
219 rdf:type schema:Organization
220 grid-institutes:grid.458438.6 schema:alternateName Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
221 schema:name Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
222 rdf:type schema:Organization
223 grid-institutes:grid.5398.7 schema:alternateName ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France
224 schema:name ESRF-The European Synchrotron, CS40220, 38043, Grenoble, France
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...