Robustness of anthropogenically forced decadal precipitation changes projected for the 21st century View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Honghai Zhang, Thomas L. Delworth

ABSTRACT

Precipitation is characterized by substantial natural variability, including on regional and decadal scales. This relatively large variability poses a grand challenge in assessing the significance of anthropogenically forced precipitation changes. Here we use multiple large ensembles of climate change experiments to evaluate whether, on regional scales, anthropogenic changes in decadal precipitation mean state are distinguishable. Here, distinguishable means the anthropogenic change is outside the range expected from natural variability. Relative to the 1950-1999 period, simulated anthropogenic shifts in precipitation mean state for the 2000-2009 period are already distinguishable over 36-41% of the globe-primarily in high latitudes, eastern subtropical oceans, and the tropics. Anthropogenic forcing in future medium-to-high emission scenarios is projected to cause distinguishable shifts over 68-75% of the globe by 2050 and 86-88% by 2100. Our findings imply anthropogenic shifts in decadal-mean precipitation will exceed the bounds of natural variability over most of the planet within several decades. More... »

PAGES

1150

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-03611-3

DOI

http://dx.doi.org/10.1038/s41467-018-03611-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101582148

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29559635


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Program in Atmospheric and Oceanic Sciences, Princeton University, 300 Forrestal Road, 08544, Princeton, NJ, USA", 
            "Geophysical Fluid Dynamical Laboratory/NOAA, 201 Forrestal Road, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Honghai", 
        "id": "sg:person.013631561322.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013631561322.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Geophysical Fluid Dynamical Laboratory/NOAA, 201 Forrestal Road, 08540, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delworth", 
        "givenName": "Thomas L.", 
        "id": "sg:person.014151466245.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151466245.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00290.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005402479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1408-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006393719", 
          "https://doi.org/10.1007/s00382-012-1408-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate3157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007613918", 
          "https://doi.org/10.1038/nclimate3157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-13-1521-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009350355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2011gl050087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009767696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3990.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012353608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1748-9326/6/3/034009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013942303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00227.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015293761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00158.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017778501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-13-00255.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018933719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0287.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020272047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0977-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021861148", 
          "https://doi.org/10.1007/s00382-010-0977-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00559.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025975005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jcli3329.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028065723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028376412", 
          "https://doi.org/10.1038/nclimate1562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028450520", 
          "https://doi.org/10.1038/nclimate2976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030655148", 
          "https://doi.org/10.1038/nclimate2689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00451.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031067023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/507437a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035499675", 
          "https://doi.org/10.1038/507437a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-016-3470-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074231", 
          "https://doi.org/10.1007/s00382-016-3470-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-016-3470-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036074231", 
          "https://doi.org/10.1007/s00382-016-3470-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037617723", 
          "https://doi.org/10.1038/ngeo2253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038108572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2012gl052910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039065509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00393.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039248138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gl060811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043313205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0156-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045851916", 
          "https://doi.org/10.1007/s10584-011-0156-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3678.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048963071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00577.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049022489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-015-2882-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051286153", 
          "https://doi.org/10.1007/s00382-015-2882-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00112.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052939525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-12-00121.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053385369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1095048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1257/aer.102.4.1477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064525791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0714.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084787623"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Precipitation is characterized by substantial natural variability, including on regional and decadal scales. This relatively large variability poses a grand challenge in assessing the significance of anthropogenically forced precipitation changes. Here we use multiple large ensembles of climate change experiments to evaluate whether, on regional scales, anthropogenic changes in decadal precipitation mean state are distinguishable. Here, distinguishable means the anthropogenic change is outside the range expected from natural variability. Relative to the 1950-1999 period, simulated anthropogenic shifts in precipitation mean state for the 2000-2009 period are already distinguishable over 36-41% of the globe-primarily in high latitudes, eastern subtropical oceans, and the tropics. Anthropogenic forcing in future medium-to-high emission scenarios is projected to cause distinguishable shifts over 68-75% of the globe by 2050 and 86-88% by 2100. Our findings imply anthropogenic shifts in decadal-mean precipitation will exceed the bounds of natural variability over most of the planet within several decades.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-018-03611-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Robustness of anthropogenically forced decadal precipitation changes projected for the 21st century", 
    "pagination": "1150", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7d2c2b7fa98865146cc6377125972612e0b63f0b6387bc2c4aa2c65f330fd113"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29559635"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-03611-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101582148"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-03611-3", 
      "https://app.dimensions.ai/details/publication/pub.1101582148"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87078_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-018-03611-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03611-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03611-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03611-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03611-3'


 

This table displays all metadata directly associated to this object as RDF triples.

191 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-03611-3 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N60f543127ad54370bfe3b83df63dd1c9
4 schema:citation sg:pub.10.1007/s00382-010-0977-x
5 sg:pub.10.1007/s00382-012-1408-y
6 sg:pub.10.1007/s00382-015-2882-9
7 sg:pub.10.1007/s00382-016-3470-3
8 sg:pub.10.1007/s10584-011-0156-z
9 sg:pub.10.1038/507437a
10 sg:pub.10.1038/nclimate1562
11 sg:pub.10.1038/nclimate2689
12 sg:pub.10.1038/nclimate2976
13 sg:pub.10.1038/nclimate3157
14 sg:pub.10.1038/ngeo2253
15 https://doi.org/10.1002/2014gl060811
16 https://doi.org/10.1002/joc.3711
17 https://doi.org/10.1029/2011gl050087
18 https://doi.org/10.1029/2012gl052910
19 https://doi.org/10.1088/1748-9326/6/3/034009
20 https://doi.org/10.1126/science.1095048
21 https://doi.org/10.1175/2009jcli3329.1
22 https://doi.org/10.1175/2010jcli3678.1
23 https://doi.org/10.1175/bams-d-12-00121.1
24 https://doi.org/10.1175/bams-d-13-00255.1
25 https://doi.org/10.1175/jcli-d-11-00227.1
26 https://doi.org/10.1175/jcli-d-11-00290.1
27 https://doi.org/10.1175/jcli-d-11-00393.1
28 https://doi.org/10.1175/jcli-d-13-00451.1
29 https://doi.org/10.1175/jcli-d-13-00577.1
30 https://doi.org/10.1175/jcli-d-14-00112.1
31 https://doi.org/10.1175/jcli-d-14-00158.1
32 https://doi.org/10.1175/jcli-d-14-00559.1
33 https://doi.org/10.1175/jcli-d-16-0287.1
34 https://doi.org/10.1175/jcli-d-16-0714.1
35 https://doi.org/10.1175/jcli3990.1
36 https://doi.org/10.1257/aer.102.4.1477
37 https://doi.org/10.5194/acp-13-1521-2013
38 schema:datePublished 2018-12
39 schema:datePublishedReg 2018-12-01
40 schema:description Precipitation is characterized by substantial natural variability, including on regional and decadal scales. This relatively large variability poses a grand challenge in assessing the significance of anthropogenically forced precipitation changes. Here we use multiple large ensembles of climate change experiments to evaluate whether, on regional scales, anthropogenic changes in decadal precipitation mean state are distinguishable. Here, distinguishable means the anthropogenic change is outside the range expected from natural variability. Relative to the 1950-1999 period, simulated anthropogenic shifts in precipitation mean state for the 2000-2009 period are already distinguishable over 36-41% of the globe-primarily in high latitudes, eastern subtropical oceans, and the tropics. Anthropogenic forcing in future medium-to-high emission scenarios is projected to cause distinguishable shifts over 68-75% of the globe by 2050 and 86-88% by 2100. Our findings imply anthropogenic shifts in decadal-mean precipitation will exceed the bounds of natural variability over most of the planet within several decades.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N231e7f31d5204f66989a081f2159c0cd
45 Nffbca536142c4a58af1f4d8bcd171db0
46 sg:journal.1043282
47 schema:name Robustness of anthropogenically forced decadal precipitation changes projected for the 21st century
48 schema:pagination 1150
49 schema:productId N1da61a50680f4eddbe40dc0634764073
50 N2a07f39cbb2c4252af000b27906d46c7
51 Na4402ef66a7f40fa9d44ea021d996456
52 Na460fa7233484782a0248efc0e9b4cbd
53 Nc232dcc51e6949c583d65a075743bf02
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101582148
55 https://doi.org/10.1038/s41467-018-03611-3
56 schema:sdDatePublished 2019-04-11T12:21
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nff54355aa3ed4934b96e398031775887
59 schema:url https://www.nature.com/articles/s41467-018-03611-3
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N1da61a50680f4eddbe40dc0634764073 schema:name readcube_id
64 schema:value 7d2c2b7fa98865146cc6377125972612e0b63f0b6387bc2c4aa2c65f330fd113
65 rdf:type schema:PropertyValue
66 N231e7f31d5204f66989a081f2159c0cd schema:volumeNumber 9
67 rdf:type schema:PublicationVolume
68 N2a07f39cbb2c4252af000b27906d46c7 schema:name nlm_unique_id
69 schema:value 101528555
70 rdf:type schema:PropertyValue
71 N3c9c284f173d4d22aaa5c00b9c7d2024 rdf:first sg:person.014151466245.18
72 rdf:rest rdf:nil
73 N60f543127ad54370bfe3b83df63dd1c9 rdf:first sg:person.013631561322.77
74 rdf:rest N3c9c284f173d4d22aaa5c00b9c7d2024
75 Na0c98be85d7e422498bc0445cd6ec61e schema:name Geophysical Fluid Dynamical Laboratory/NOAA, 201 Forrestal Road, 08540, Princeton, NJ, USA
76 rdf:type schema:Organization
77 Na4402ef66a7f40fa9d44ea021d996456 schema:name doi
78 schema:value 10.1038/s41467-018-03611-3
79 rdf:type schema:PropertyValue
80 Na460fa7233484782a0248efc0e9b4cbd schema:name pubmed_id
81 schema:value 29559635
82 rdf:type schema:PropertyValue
83 Nc232dcc51e6949c583d65a075743bf02 schema:name dimensions_id
84 schema:value pub.1101582148
85 rdf:type schema:PropertyValue
86 Nff54355aa3ed4934b96e398031775887 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nffbca536142c4a58af1f4d8bcd171db0 schema:issueNumber 1
89 rdf:type schema:PublicationIssue
90 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
91 schema:name Earth Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Geography and Environmental Geoscience
95 rdf:type schema:DefinedTerm
96 sg:journal.1043282 schema:issn 2041-1723
97 schema:name Nature Communications
98 rdf:type schema:Periodical
99 sg:person.013631561322.77 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
100 schema:familyName Zhang
101 schema:givenName Honghai
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013631561322.77
103 rdf:type schema:Person
104 sg:person.014151466245.18 schema:affiliation Na0c98be85d7e422498bc0445cd6ec61e
105 schema:familyName Delworth
106 schema:givenName Thomas L.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151466245.18
108 rdf:type schema:Person
109 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
110 https://doi.org/10.1007/s00382-010-0977-x
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s00382-012-1408-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006393719
113 https://doi.org/10.1007/s00382-012-1408-y
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00382-015-2882-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051286153
116 https://doi.org/10.1007/s00382-015-2882-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00382-016-3470-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036074231
119 https://doi.org/10.1007/s00382-016-3470-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10584-011-0156-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045851916
122 https://doi.org/10.1007/s10584-011-0156-z
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/507437a schema:sameAs https://app.dimensions.ai/details/publication/pub.1035499675
125 https://doi.org/10.1038/507437a
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nclimate1562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028376412
128 https://doi.org/10.1038/nclimate1562
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nclimate2689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030655148
131 https://doi.org/10.1038/nclimate2689
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nclimate2976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028450520
134 https://doi.org/10.1038/nclimate2976
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nclimate3157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007613918
137 https://doi.org/10.1038/nclimate3157
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/ngeo2253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037617723
140 https://doi.org/10.1038/ngeo2253
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/2014gl060811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043313205
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/joc.3711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038108572
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1029/2011gl050087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009767696
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1029/2012gl052910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039065509
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1088/1748-9326/6/3/034009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013942303
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.1095048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449413
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1175/2009jcli3329.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028065723
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1175/2010jcli3678.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048963071
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1175/bams-d-12-00121.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385369
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1175/bams-d-13-00255.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018933719
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1175/jcli-d-11-00227.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015293761
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1175/jcli-d-11-00290.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005402479
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1175/jcli-d-11-00393.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039248138
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1175/jcli-d-13-00451.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031067023
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1175/jcli-d-13-00577.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049022489
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1175/jcli-d-14-00112.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052939525
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1175/jcli-d-14-00158.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017778501
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1175/jcli-d-14-00559.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025975005
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1175/jcli-d-16-0287.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020272047
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1175/jcli-d-16-0714.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084787623
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1175/jcli3990.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012353608
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1257/aer.102.4.1477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064525791
185 rdf:type schema:CreativeWork
186 https://doi.org/10.5194/acp-13-1521-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009350355
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
189 schema:name Geophysical Fluid Dynamical Laboratory/NOAA, 201 Forrestal Road, 08540, Princeton, NJ, USA
190 Program in Atmospheric and Oceanic Sciences, Princeton University, 300 Forrestal Road, 08544, Princeton, NJ, USA
191 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...