Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03-19

AUTHORS

Pei Zhang, Jason J. Maldonis, Ze Liu, Jan Schroers, Paul M. Voyles

ABSTRACT

Supercooled liquids exhibit spatial heterogeneity in the dynamics of their fluctuating atomic arrangements. The length and time scales of the heterogeneous dynamics are central to the glass transition and influence nucleation and growth of crystals from the liquid. Here, we report direct experimental visualization of the spatially heterogeneous dynamics as a function of temperature in the supercooled liquid state of a Pt-based metallic glass, using electron correlation microscopy with sub-nanometer resolution. An experimental four-point space-time correlation function demonstrates a growing dynamic correlation length, ξ, upon cooling of the liquid toward the glass transition temperature. ξ as a function of the relaxation time τ are in good agreement with Adam-Gibbs theory, inhomogeneous mode-coupling theory and random first-order transition theory of the glass transition. The same experiments demonstrate the existence of a nanometer thickness near-surface layer with order of magnitude shorter relaxation time than inside the bulk. More... »

PAGES

1129

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-03604-2

DOI

http://dx.doi.org/10.1038/s41467-018-03604-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101558945

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29555920


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Pei", 
        "id": "sg:person.01351534565.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351534565.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maldonis", 
        "givenName": "Jason J.", 
        "id": "sg:person.011356722543.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356722543.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Ze", 
        "id": "sg:person.01121161430.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121161430.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schroers", 
        "givenName": "Jan", 
        "id": "sg:person.01145527322.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA", 
          "id": "http://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voyles", 
        "givenName": "Paul M.", 
        "id": "sg:person.01232253134.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232253134.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/36803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038837403", 
          "https://doi.org/10.1038/36803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012534581", 
          "https://doi.org/10.1038/nphys572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020300303", 
          "https://doi.org/10.1038/ncomms9157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018290838", 
          "https://doi.org/10.1038/nature07718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004582671", 
          "https://doi.org/10.1038/nature02409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35065704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005355581", 
          "https://doi.org/10.1038/35065704"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03-19", 
    "datePublishedReg": "2018-03-19", 
    "description": "Supercooled liquids exhibit spatial heterogeneity in the dynamics of their fluctuating atomic arrangements. The length and time scales of the heterogeneous dynamics are central to the glass transition and influence nucleation and growth of crystals from the liquid. Here, we report direct experimental visualization of the spatially heterogeneous dynamics as a function of temperature in the supercooled liquid state of a Pt-based metallic glass, using electron correlation microscopy with sub-nanometer resolution. An experimental four-point space-time correlation function demonstrates a growing dynamic correlation length, \u03be, upon cooling of the liquid toward the glass transition temperature. \u03be as a function of the relaxation time \u03c4 are in good agreement with Adam-Gibbs\u00a0theory, inhomogeneous mode-coupling theory and random first-order transition theory of the glass transition. The same experiments demonstrate the existence of a nanometer thickness near-surface layer with order of magnitude shorter relaxation time than inside the bulk.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-03604-2", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4311823", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3127634", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4322384", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "correlation microscopy", 
      "sub-nanometer resolution", 
      "heterogeneous dynamics", 
      "random first-order transition theory", 
      "mode-coupling theory", 
      "space-time correlation function", 
      "direct experimental visualization", 
      "short relaxation times", 
      "relaxation time \u03c4", 
      "dynamic correlation length", 
      "atomic arrangement", 
      "glass transition", 
      "inhomogeneous mode-coupling theory", 
      "nanometer thickness", 
      "function of temperature", 
      "correlation functions", 
      "time \u03c4", 
      "relaxation time", 
      "correlation length", 
      "liquid state", 
      "metallic glasses", 
      "time scales", 
      "good agreement", 
      "glass", 
      "transition temperature", 
      "surface layer", 
      "experimental visualization", 
      "Adam-Gibbs", 
      "transition", 
      "microscopy", 
      "dynamics", 
      "liquid", 
      "theory", 
      "glass transition temperature", 
      "transition theory", 
      "same experiment", 
      "crystals", 
      "temperature", 
      "growth of crystals", 
      "resolution", 
      "bulk", 
      "agreement", 
      "thickness", 
      "layer", 
      "function", 
      "state", 
      "spatial heterogeneity", 
      "existence", 
      "nucleation", 
      "Pt", 
      "length", 
      "experiments", 
      "arrangement", 
      "order", 
      "scale", 
      "time", 
      "visualization", 
      "heterogeneity", 
      "growth"
    ], 
    "name": "Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy", 
    "pagination": "1129", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101558945"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-03604-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29555920"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-03604-2", 
      "https://app.dimensions.ai/details/publication/pub.1101558945"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_763.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-03604-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03604-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03604-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03604-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03604-2'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      90 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-03604-2 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ndf829d9461274ce78ec10a04de9897fa
4 schema:citation sg:pub.10.1038/35065704
5 sg:pub.10.1038/36803
6 sg:pub.10.1038/nature02409
7 sg:pub.10.1038/nature07718
8 sg:pub.10.1038/ncomms9157
9 sg:pub.10.1038/nphys572
10 schema:datePublished 2018-03-19
11 schema:datePublishedReg 2018-03-19
12 schema:description Supercooled liquids exhibit spatial heterogeneity in the dynamics of their fluctuating atomic arrangements. The length and time scales of the heterogeneous dynamics are central to the glass transition and influence nucleation and growth of crystals from the liquid. Here, we report direct experimental visualization of the spatially heterogeneous dynamics as a function of temperature in the supercooled liquid state of a Pt-based metallic glass, using electron correlation microscopy with sub-nanometer resolution. An experimental four-point space-time correlation function demonstrates a growing dynamic correlation length, ξ, upon cooling of the liquid toward the glass transition temperature. ξ as a function of the relaxation time τ are in good agreement with Adam-Gibbs theory, inhomogeneous mode-coupling theory and random first-order transition theory of the glass transition. The same experiments demonstrate the existence of a nanometer thickness near-surface layer with order of magnitude shorter relaxation time than inside the bulk.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N445f81ee7b7a4fa890652cac8672b0a9
16 Nd9e001e9128846e7b913386a5188b4e1
17 sg:journal.1043282
18 schema:keywords Adam-Gibbs
19 Pt
20 agreement
21 arrangement
22 atomic arrangement
23 bulk
24 correlation functions
25 correlation length
26 correlation microscopy
27 crystals
28 direct experimental visualization
29 dynamic correlation length
30 dynamics
31 existence
32 experimental visualization
33 experiments
34 function
35 function of temperature
36 glass
37 glass transition
38 glass transition temperature
39 good agreement
40 growth
41 growth of crystals
42 heterogeneity
43 heterogeneous dynamics
44 inhomogeneous mode-coupling theory
45 layer
46 length
47 liquid
48 liquid state
49 metallic glasses
50 microscopy
51 mode-coupling theory
52 nanometer thickness
53 nucleation
54 order
55 random first-order transition theory
56 relaxation time
57 relaxation time τ
58 resolution
59 same experiment
60 scale
61 short relaxation times
62 space-time correlation function
63 spatial heterogeneity
64 state
65 sub-nanometer resolution
66 surface layer
67 temperature
68 theory
69 thickness
70 time
71 time scales
72 time τ
73 transition
74 transition temperature
75 transition theory
76 visualization
77 schema:name Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy
78 schema:pagination 1129
79 schema:productId N0148341090fe4304b925cd94f674844b
80 N6d9607d0c0544978991113b135730d86
81 Nb67679e939744603b57848ae087ad784
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101558945
83 https://doi.org/10.1038/s41467-018-03604-2
84 schema:sdDatePublished 2022-09-02T16:02
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nbff93dfe4b8a4c4d8fd39421b56273d8
87 schema:url https://doi.org/10.1038/s41467-018-03604-2
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N0148341090fe4304b925cd94f674844b schema:name doi
92 schema:value 10.1038/s41467-018-03604-2
93 rdf:type schema:PropertyValue
94 N261ff75dfdb7468da5659a4dc5860b15 rdf:first sg:person.01145527322.19
95 rdf:rest N45a59674c0654e0990a9b181355da5ae
96 N445f81ee7b7a4fa890652cac8672b0a9 schema:issueNumber 1
97 rdf:type schema:PublicationIssue
98 N45a59674c0654e0990a9b181355da5ae rdf:first sg:person.01232253134.99
99 rdf:rest rdf:nil
100 N58aca9db371c49e5907c530aef88ceb6 rdf:first sg:person.011356722543.13
101 rdf:rest Na0152302f98d4a8eb2cc1c0d61743d7d
102 N6d9607d0c0544978991113b135730d86 schema:name pubmed_id
103 schema:value 29555920
104 rdf:type schema:PropertyValue
105 Na0152302f98d4a8eb2cc1c0d61743d7d rdf:first sg:person.01121161430.54
106 rdf:rest N261ff75dfdb7468da5659a4dc5860b15
107 Nb67679e939744603b57848ae087ad784 schema:name dimensions_id
108 schema:value pub.1101558945
109 rdf:type schema:PropertyValue
110 Nbff93dfe4b8a4c4d8fd39421b56273d8 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 Nd9e001e9128846e7b913386a5188b4e1 schema:volumeNumber 9
113 rdf:type schema:PublicationVolume
114 Ndf829d9461274ce78ec10a04de9897fa rdf:first sg:person.01351534565.66
115 rdf:rest N58aca9db371c49e5907c530aef88ceb6
116 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
117 schema:name Physical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
120 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
121 rdf:type schema:DefinedTerm
122 sg:grant.3127634 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03604-2
123 rdf:type schema:MonetaryGrant
124 sg:grant.4311823 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03604-2
125 rdf:type schema:MonetaryGrant
126 sg:grant.4322384 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03604-2
127 rdf:type schema:MonetaryGrant
128 sg:journal.1043282 schema:issn 2041-1723
129 schema:name Nature Communications
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.01121161430.54 schema:affiliation grid-institutes:grid.47100.32
133 schema:familyName Liu
134 schema:givenName Ze
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121161430.54
136 rdf:type schema:Person
137 sg:person.011356722543.13 schema:affiliation grid-institutes:grid.14003.36
138 schema:familyName Maldonis
139 schema:givenName Jason J.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356722543.13
141 rdf:type schema:Person
142 sg:person.01145527322.19 schema:affiliation grid-institutes:grid.47100.32
143 schema:familyName Schroers
144 schema:givenName Jan
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145527322.19
146 rdf:type schema:Person
147 sg:person.01232253134.99 schema:affiliation grid-institutes:grid.14003.36
148 schema:familyName Voyles
149 schema:givenName Paul M.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232253134.99
151 rdf:type schema:Person
152 sg:person.01351534565.66 schema:affiliation grid-institutes:grid.14003.36
153 schema:familyName Zhang
154 schema:givenName Pei
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351534565.66
156 rdf:type schema:Person
157 sg:pub.10.1038/35065704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005355581
158 https://doi.org/10.1038/35065704
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/36803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038837403
161 https://doi.org/10.1038/36803
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature02409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004582671
164 https://doi.org/10.1038/nature02409
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature07718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018290838
167 https://doi.org/10.1038/nature07718
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/ncomms9157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020300303
170 https://doi.org/10.1038/ncomms9157
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012534581
173 https://doi.org/10.1038/nphys572
174 rdf:type schema:CreativeWork
175 grid-institutes:grid.14003.36 schema:alternateName Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA
176 schema:name Department of Materials Science and Engineering, University of Wisconsin-Madison, 53706, Madison, WI, USA
177 rdf:type schema:Organization
178 grid-institutes:grid.47100.32 schema:alternateName Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
179 schema:name Department of Mechanical Engineering and Materials Science, Yale University, 06511, New Haven, CT, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...