Toward a universal decoder of linguistic meaning from brain activation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03-06

AUTHORS

Francisco Pereira, Bin Lou, Brianna Pritchett, Samuel Ritter, Samuel J. Gershman, Nancy Kanwisher, Matthew Botvinick, Evelina Fedorenko

ABSTRACT

Prior work decoding linguistic meaning from imaging data has been largely limited to concrete nouns, using similar stimuli for training and testing, from a relatively small number of semantic categories. Here we present a new approach for building a brain decoding system in which words and sentences are represented as vectors in a semantic space constructed from massive text corpora. By efficiently sampling this space to select training stimuli shown to subjects, we maximize the ability to generalize to new meanings from limited imaging data. To validate this approach, we train the system on imaging data of individual concepts, and show it can decode semantic vector representations from imaging data of sentences about a wide variety of both concrete and abstract topics from two separate datasets. These decoded representations are sufficiently detailed to distinguish even semantically similar sentences, and to capture the similarity structure of meaning relationships between sentences. More... »

PAGES

963

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-018-03068-4

DOI

http://dx.doi.org/10.1038/s41467-018-03068-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101269733

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29511192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Linguistics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Physical Stimulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Semantics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ 08540 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ 08540 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pereira", 
        "givenName": "Francisco", 
        "id": "sg:person.07670142062.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670142062.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ 08540 USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ 08540 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lou", 
        "givenName": "Bin", 
        "id": "sg:person.01236544134.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236544134.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139 USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pritchett", 
        "givenName": "Brianna", 
        "id": "sg:person.015075742561.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075742561.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "DeepMind, London, N1C 4AG UK", 
          "id": "http://www.grid.ac/institutes/grid.498210.6", 
          "name": [
            "DeepMind, London, N1C 4AG UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritter", 
        "givenName": "Samuel", 
        "id": "sg:person.011621305215.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621305215.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138 USA", 
          "id": "http://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gershman", 
        "givenName": "Samuel J.", 
        "id": "sg:person.01026051543.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026051543.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "McGovern Institute for Brain Research, MIT, Cambridge, MA 02139 USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139 USA", 
            "McGovern Institute for Brain Research, MIT, Cambridge, MA 02139 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanwisher", 
        "givenName": "Nancy", 
        "id": "sg:person.01041640107.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041640107.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gatsby Computational Neuroscience Unit, University College London, London, WC1E 6BT UK", 
          "id": "http://www.grid.ac/institutes/grid.83440.3b", 
          "name": [
            "DeepMind, London, N1C 4AG UK", 
            "Gatsby Computational Neuroscience Unit, University College London, London, WC1E 6BT UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Botvinick", 
        "givenName": "Matthew", 
        "id": "sg:person.07715616707.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715616707.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114 USA", 
          "id": "http://www.grid.ac/institutes/grid.32224.35", 
          "name": [
            "McGovern Institute for Brain Research, MIT, Cambridge, MA 02139 USA", 
            "Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA", 
            "Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedorenko", 
        "givenName": "Evelina", 
        "id": "sg:person.01356315542.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356315542.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025914580", 
          "https://doi.org/10.1038/nature06713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034459161", 
          "https://doi.org/10.1038/nrn2277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21606-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022356842", 
          "https://doi.org/10.1007/978-0-387-21606-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13428-013-0403-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036518632", 
          "https://doi.org/10.3758/s13428-013-0403-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature17637", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031808089", 
          "https://doi.org/10.1038/nature17637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn.2016.167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003300328", 
          "https://doi.org/10.1038/nrn.2016.167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11222-007-9033-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008067612", 
          "https://doi.org/10.1007/s11222-007-9033-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn.2016.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052218048", 
          "https://doi.org/10.1038/nrn.2016.150"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03-06", 
    "datePublishedReg": "2018-03-06", 
    "description": "Prior work decoding linguistic meaning from imaging data has been largely limited to concrete nouns, using similar stimuli for training and testing, from a relatively small number of semantic categories. Here we present a new approach for building a brain decoding system in which words and sentences are represented as vectors in a semantic space constructed from massive text corpora. By efficiently sampling this space to select training stimuli shown to subjects, we maximize the ability to generalize to new meanings from limited imaging data. To validate this approach, we train the system on imaging data of individual concepts, and show it can decode semantic vector representations from imaging data of sentences about a wide variety of both concrete and abstract topics from two separate datasets. These decoded representations are sufficiently detailed to distinguish even semantically similar sentences, and to capture the similarity structure of meaning relationships between sentences.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-018-03068-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7910126", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2422664", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6442623", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "linguistic meaning", 
      "massive text corpora", 
      "text corpora", 
      "new meaning", 
      "concrete nouns", 
      "semantic categories", 
      "sentences", 
      "semantic vector representations", 
      "similar sentences", 
      "meaning", 
      "semantic space", 
      "abstract topics", 
      "brain activation", 
      "individual concepts", 
      "similar stimuli", 
      "training stimulus", 
      "similarity structure", 
      "vector representation", 
      "representation", 
      "corpus", 
      "nouns", 
      "words", 
      "stimuli", 
      "space", 
      "prior work", 
      "universal decoder", 
      "topic", 
      "categories", 
      "concept", 
      "training", 
      "work", 
      "decoding system", 
      "separate datasets", 
      "relationship", 
      "ability", 
      "wide variety", 
      "approach", 
      "subjects", 
      "variety", 
      "data", 
      "new approach", 
      "small number", 
      "testing", 
      "dataset", 
      "activation", 
      "decoder", 
      "system", 
      "structure", 
      "number", 
      "vector", 
      "brain decoding system", 
      "data of sentences"
    ], 
    "name": "Toward a universal decoder of linguistic meaning from brain activation", 
    "pagination": "963", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101269733"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-018-03068-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29511192"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-018-03068-4", 
      "https://app.dimensions.ai/details/publication/pub.1101269733"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-018-03068-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03068-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03068-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03068-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-018-03068-4'


 

This table displays all metadata directly associated to this object as RDF triples.

252 TRIPLES      22 PREDICATES      94 URIs      78 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-018-03068-4 schema:about N01b274c72fe848ba9557d2ffcfd33977
2 N2f3c7c61a75a4e7cbda3ee83fd5674a6
3 N72db080564274591b9179e424c8cf695
4 Na4e5775b10c6462eb2467ea84ed8a1b5
5 Nbbb713c738ce49d8bf9a8259e95ec2a9
6 Nc120297bca6e41a5b9a03b037e8e6fda
7 Neb9b93987afe47d08a3410c871908b4e
8 Ned3625724d1f43dab79d5e82661315bb
9 anzsrc-for:20
10 anzsrc-for:2004
11 schema:author N63f8047579fb4420a2612a823dcf88c9
12 schema:citation sg:pub.10.1007/978-0-387-21606-5
13 sg:pub.10.1007/s11222-007-9033-z
14 sg:pub.10.1038/nature06713
15 sg:pub.10.1038/nature17637
16 sg:pub.10.1038/nrn.2016.150
17 sg:pub.10.1038/nrn.2016.167
18 sg:pub.10.1038/nrn2277
19 sg:pub.10.3758/s13428-013-0403-5
20 schema:datePublished 2018-03-06
21 schema:datePublishedReg 2018-03-06
22 schema:description Prior work decoding linguistic meaning from imaging data has been largely limited to concrete nouns, using similar stimuli for training and testing, from a relatively small number of semantic categories. Here we present a new approach for building a brain decoding system in which words and sentences are represented as vectors in a semantic space constructed from massive text corpora. By efficiently sampling this space to select training stimuli shown to subjects, we maximize the ability to generalize to new meanings from limited imaging data. To validate this approach, we train the system on imaging data of individual concepts, and show it can decode semantic vector representations from imaging data of sentences about a wide variety of both concrete and abstract topics from two separate datasets. These decoded representations are sufficiently detailed to distinguish even semantically similar sentences, and to capture the similarity structure of meaning relationships between sentences.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N05dd9a4c52b44931ae44297d19a08eec
27 N0a0672cbe12d49f782e1757d5e89808e
28 sg:journal.1043282
29 schema:keywords ability
30 abstract topics
31 activation
32 approach
33 brain activation
34 brain decoding system
35 categories
36 concept
37 concrete nouns
38 corpus
39 data
40 data of sentences
41 dataset
42 decoder
43 decoding system
44 individual concepts
45 linguistic meaning
46 massive text corpora
47 meaning
48 new approach
49 new meaning
50 nouns
51 number
52 prior work
53 relationship
54 representation
55 semantic categories
56 semantic space
57 semantic vector representations
58 sentences
59 separate datasets
60 similar sentences
61 similar stimuli
62 similarity structure
63 small number
64 space
65 stimuli
66 structure
67 subjects
68 system
69 testing
70 text corpora
71 topic
72 training
73 training stimulus
74 universal decoder
75 variety
76 vector
77 vector representation
78 wide variety
79 words
80 work
81 schema:name Toward a universal decoder of linguistic meaning from brain activation
82 schema:pagination 963
83 schema:productId N4b9c2851cb594951b2098781c25a2eb0
84 N691e889e3c174dd1b392c128bbaed951
85 N744cfb5724874e45b43836ff6f802159
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101269733
87 https://doi.org/10.1038/s41467-018-03068-4
88 schema:sdDatePublished 2021-12-01T19:39
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Na689a695fec14e9c91b18e3624cdd819
91 schema:url https://doi.org/10.1038/s41467-018-03068-4
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N01b274c72fe848ba9557d2ffcfd33977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Female
97 rdf:type schema:DefinedTerm
98 N05dd9a4c52b44931ae44297d19a08eec schema:volumeNumber 9
99 rdf:type schema:PublicationVolume
100 N0a0672cbe12d49f782e1757d5e89808e schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 N10ee85e0123044fa99b50ee59071d7a9 rdf:first sg:person.01026051543.28
103 rdf:rest N9d6bcd80ce904482a39d80cfa68c4fb7
104 N2f3c7c61a75a4e7cbda3ee83fd5674a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Physical Stimulation
106 rdf:type schema:DefinedTerm
107 N4b9c2851cb594951b2098781c25a2eb0 schema:name pubmed_id
108 schema:value 29511192
109 rdf:type schema:PropertyValue
110 N63f8047579fb4420a2612a823dcf88c9 rdf:first sg:person.07670142062.98
111 rdf:rest Nf1da328164f4495685c2b9b2f2190d39
112 N691e889e3c174dd1b392c128bbaed951 schema:name dimensions_id
113 schema:value pub.1101269733
114 rdf:type schema:PropertyValue
115 N72db080564274591b9179e424c8cf695 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Semantics
117 rdf:type schema:DefinedTerm
118 N744cfb5724874e45b43836ff6f802159 schema:name doi
119 schema:value 10.1038/s41467-018-03068-4
120 rdf:type schema:PropertyValue
121 N9d6bcd80ce904482a39d80cfa68c4fb7 rdf:first sg:person.01041640107.21
122 rdf:rest Ndeed2ae1dd944d758462d8f10f13d9a2
123 Na4e5775b10c6462eb2467ea84ed8a1b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Humans
125 rdf:type schema:DefinedTerm
126 Na689a695fec14e9c91b18e3624cdd819 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nbbb713c738ce49d8bf9a8259e95ec2a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Male
130 rdf:type schema:DefinedTerm
131 Nc120297bca6e41a5b9a03b037e8e6fda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Adult
133 rdf:type schema:DefinedTerm
134 Ndeb8c2c33264437bb20e43ae4d7b4d29 rdf:first sg:person.015075742561.02
135 rdf:rest Ne717dce6e6cc4ef88e63206123fd2315
136 Ndeed2ae1dd944d758462d8f10f13d9a2 rdf:first sg:person.07715616707.06
137 rdf:rest Nf4bbb051e76046f998dc400213387a21
138 Ne717dce6e6cc4ef88e63206123fd2315 rdf:first sg:person.011621305215.81
139 rdf:rest N10ee85e0123044fa99b50ee59071d7a9
140 Neb9b93987afe47d08a3410c871908b4e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Magnetic Resonance Imaging
142 rdf:type schema:DefinedTerm
143 Ned3625724d1f43dab79d5e82661315bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Brain Mapping
145 rdf:type schema:DefinedTerm
146 Nf1da328164f4495685c2b9b2f2190d39 rdf:first sg:person.01236544134.76
147 rdf:rest Ndeb8c2c33264437bb20e43ae4d7b4d29
148 Nf4bbb051e76046f998dc400213387a21 rdf:first sg:person.01356315542.29
149 rdf:rest rdf:nil
150 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
151 schema:name Language, Communication and Culture
152 rdf:type schema:DefinedTerm
153 anzsrc-for:2004 schema:inDefinedTermSet anzsrc-for:
154 schema:name Linguistics
155 rdf:type schema:DefinedTerm
156 sg:grant.2422664 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03068-4
157 rdf:type schema:MonetaryGrant
158 sg:grant.6442623 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03068-4
159 rdf:type schema:MonetaryGrant
160 sg:grant.7910126 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-018-03068-4
161 rdf:type schema:MonetaryGrant
162 sg:journal.1043282 schema:issn 2041-1723
163 schema:name Nature Communications
164 schema:publisher Springer Nature
165 rdf:type schema:Periodical
166 sg:person.01026051543.28 schema:affiliation grid-institutes:grid.38142.3c
167 schema:familyName Gershman
168 schema:givenName Samuel J.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026051543.28
170 rdf:type schema:Person
171 sg:person.01041640107.21 schema:affiliation grid-institutes:grid.116068.8
172 schema:familyName Kanwisher
173 schema:givenName Nancy
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041640107.21
175 rdf:type schema:Person
176 sg:person.011621305215.81 schema:affiliation grid-institutes:grid.498210.6
177 schema:familyName Ritter
178 schema:givenName Samuel
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011621305215.81
180 rdf:type schema:Person
181 sg:person.01236544134.76 schema:affiliation grid-institutes:None
182 schema:familyName Lou
183 schema:givenName Bin
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01236544134.76
185 rdf:type schema:Person
186 sg:person.01356315542.29 schema:affiliation grid-institutes:grid.32224.35
187 schema:familyName Fedorenko
188 schema:givenName Evelina
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356315542.29
190 rdf:type schema:Person
191 sg:person.015075742561.02 schema:affiliation grid-institutes:grid.116068.8
192 schema:familyName Pritchett
193 schema:givenName Brianna
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015075742561.02
195 rdf:type schema:Person
196 sg:person.07670142062.98 schema:affiliation grid-institutes:None
197 schema:familyName Pereira
198 schema:givenName Francisco
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670142062.98
200 rdf:type schema:Person
201 sg:person.07715616707.06 schema:affiliation grid-institutes:grid.83440.3b
202 schema:familyName Botvinick
203 schema:givenName Matthew
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715616707.06
205 rdf:type schema:Person
206 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
207 https://doi.org/10.1007/978-0-387-21606-5
208 rdf:type schema:CreativeWork
209 sg:pub.10.1007/s11222-007-9033-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1008067612
210 https://doi.org/10.1007/s11222-007-9033-z
211 rdf:type schema:CreativeWork
212 sg:pub.10.1038/nature06713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025914580
213 https://doi.org/10.1038/nature06713
214 rdf:type schema:CreativeWork
215 sg:pub.10.1038/nature17637 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031808089
216 https://doi.org/10.1038/nature17637
217 rdf:type schema:CreativeWork
218 sg:pub.10.1038/nrn.2016.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052218048
219 https://doi.org/10.1038/nrn.2016.150
220 rdf:type schema:CreativeWork
221 sg:pub.10.1038/nrn.2016.167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003300328
222 https://doi.org/10.1038/nrn.2016.167
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nrn2277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034459161
225 https://doi.org/10.1038/nrn2277
226 rdf:type schema:CreativeWork
227 sg:pub.10.3758/s13428-013-0403-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036518632
228 https://doi.org/10.3758/s13428-013-0403-5
229 rdf:type schema:CreativeWork
230 grid-institutes:None schema:alternateName Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ 08540 USA
231 schema:name Medical Imaging Technologies, Siemens Healthineers, Princeton, NJ 08540 USA
232 rdf:type schema:Organization
233 grid-institutes:grid.116068.8 schema:alternateName Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139 USA
234 McGovern Institute for Brain Research, MIT, Cambridge, MA 02139 USA
235 schema:name Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139 USA
236 McGovern Institute for Brain Research, MIT, Cambridge, MA 02139 USA
237 rdf:type schema:Organization
238 grid-institutes:grid.32224.35 schema:alternateName Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114 USA
239 schema:name Department of Psychiatry, Harvard Medical School, Boston, MA 02115 USA
240 Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114 USA
241 McGovern Institute for Brain Research, MIT, Cambridge, MA 02139 USA
242 rdf:type schema:Organization
243 grid-institutes:grid.38142.3c schema:alternateName Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
244 schema:name Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
245 rdf:type schema:Organization
246 grid-institutes:grid.498210.6 schema:alternateName DeepMind, London, N1C 4AG UK
247 schema:name DeepMind, London, N1C 4AG UK
248 rdf:type schema:Organization
249 grid-institutes:grid.83440.3b schema:alternateName Gatsby Computational Neuroscience Unit, University College London, London, WC1E 6BT UK
250 schema:name DeepMind, London, N1C 4AG UK
251 Gatsby Computational Neuroscience Unit, University College London, London, WC1E 6BT UK
252 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...