Ultrafast current imaging by Bayesian inversion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

S. Somnath, K. J. H. Law, A. N. Morozovska, P. Maksymovych, Y. Kim, X. Lu, M. Alexe, R. Archibald, S. V. Kalinin, S. Jesse, R. K. Vasudevan

ABSTRACT

Spectroscopic measurements of current-voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference. This general-mode I-V method allows three orders of magnitude faster measurement rates than presently possible. The technique is demonstrated by acquiring I-V curves in ferroelectric nanocapacitors, yielding >100,000 I-V curves in <20 min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid I-V measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy. More... »

PAGES

513

References to SciGraph publications

  • 2015-12. Complete information acquisition in dynamic force microscopy in NATURE COMMUNICATIONS
  • 2012-04. The emergence of multifrequency force microscopy in NATURE NANOTECHNOLOGY
  • 2016-11. Determination of ferroelectric contributions to electromechanical response by frequency dependent piezoresponse force microscopy in SCIENTIFIC REPORTS
  • 2008-04. High-speed AFM and nano-visualization of biomolecular processes in PFLÜGERS ARCHIV - EUROPEAN JOURNAL OF PHYSIOLOGY
  • 2012-06. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy in NATURE PROTOCOLS
  • 2016-10. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis in SCIENTIFIC REPORTS
  • 2015. Noncontact Atomic Force Microscopy, Volume 3 in NONE
  • 2009-03. Conduction at domain walls in oxide multiferroics in NATURE MATERIALS
  • 2012-07. Visualization of the emergence of the pseudogap state and the evolution to superconductivity in a lightly hole-doped Mott insulator in NATURE PHYSICS
  • 2015. Data Assimilation, A Mathematical Introduction in NONE
  • 2007-05-31. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ in NATURE
  • 2016-09. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space in SCIENTIFIC REPORTS
  • 2016-12-02. Rapid mapping of polarization switching through complete information acquisition in NATURE COMMUNICATIONS
  • 2009-10. Ferroelectric domain switching dynamics with combined 20 nm and 10 ns resolution in JOURNAL OF MATERIALS SCIENCE
  • 2015-11. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients in NATURE NANOTECHNOLOGY
  • 2016-07. Resolving metal-molecule interfaces at single-molecule junctions in SCIENTIFIC REPORTS
  • 2014-08. Advanced scanning probe lithography in NATURE NANOTECHNOLOGY
  • 2001. Noncontact Atomic Force Microscopy in OPTICAL AND ELECTRONIC PROCESS OF NANO-MATTERS
  • 2015-10. Big-deep-smart data in imaging for guiding materials design in NATURE MATERIALS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-017-02455-7

    DOI

    http://dx.doi.org/10.1038/s41467-017-02455-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1100755968

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29410417


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Somnath", 
            "givenName": "S.", 
            "id": "sg:person.0742201540.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742201540.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Computer Science and Mathematics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Law", 
            "givenName": "K. J. H.", 
            "id": "sg:person.012513734652.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012513734652.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Physics", 
              "id": "https://www.grid.ac/institutes/grid.425082.9", 
              "name": [
                "Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, 03028, Kyiv, Ukraine"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morozovska", 
            "givenName": "A. N.", 
            "id": "sg:person.01141164150.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141164150.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Maksymovych", 
            "givenName": "P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sungkyunkwan University", 
              "id": "https://www.grid.ac/institutes/grid.264381.a", 
              "name": [
                "School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Y.", 
            "id": "sg:person.01126106075.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126106075.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xidian University", 
              "id": "https://www.grid.ac/institutes/grid.440736.2", 
              "name": [
                "The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, 710071, Xi\u2019an, Shaanxi, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "X.", 
            "id": "sg:person.0605640642.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605640642.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Warwick", 
              "id": "https://www.grid.ac/institutes/grid.7372.1", 
              "name": [
                "Department of Physics, University of Warwick, CV4 7AL, Coventry, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Alexe", 
            "givenName": "M.", 
            "id": "sg:person.0623260666.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623260666.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Computer Science and Mathematics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Archibald", 
            "givenName": "R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalinin", 
            "givenName": "S. V.", 
            "id": "sg:person.01207277350.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207277350.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jesse", 
            "givenName": "S.", 
            "id": "sg:person.01141047523.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141047523.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA", 
                "Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vasudevan", 
            "givenName": "R. K.", 
            "id": "sg:person.0770402325.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770402325.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/adfm.201203422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003931278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-15588-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004128643", 
              "https://doi.org/10.1007/978-3-319-15588-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-15588-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004128643", 
              "https://doi.org/10.1007/978-3-319-15588-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00150190390222510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006018737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adfm.201300079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006344829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-017-2482-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006775477", 
              "https://doi.org/10.1007/978-94-017-2482-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1066974", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011175990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1129564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011745882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012444615", 
              "https://doi.org/10.1038/ncomms13290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2012.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013400325", 
              "https://doi.org/10.1038/nprot.2012.047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4884422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014919435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2012.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015783149", 
              "https://doi.org/10.1038/nnano.2012.38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10584589408223886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016851837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep31625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017894230", 
              "https://doi.org/10.1038/srep31625"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024275013", 
              "https://doi.org/10.1038/nnano.2015.191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep26606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025239523", 
              "https://doi.org/10.1038/srep26606"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2014.157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027239552", 
              "https://doi.org/10.1038/nnano.2014.157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-5729(99)00003-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028033767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep30579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029010926", 
              "https://doi.org/10.1038/srep30579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0965-0393/21/7/075001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030685165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2321", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034089412", 
              "https://doi.org/10.1038/nphys2321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200502711", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034587340"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep30557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034961972", 
              "https://doi.org/10.1038/srep30557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00150199408244739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035835310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2373", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037186125", 
              "https://doi.org/10.1038/nmat2373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ccr.2009.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038941621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat4395", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039532324", 
              "https://doi.org/10.1038/nmat4395"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4948601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042353464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042416742", 
              "https://doi.org/10.1038/nature05881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044250976", 
              "https://doi.org/10.1038/ncomms7550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cap.2011.05.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045370956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-009-3699-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045393909", 
              "https://doi.org/10.1007/s10853-009-3699-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1072640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048889932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00424-007-0406-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049242471", 
              "https://doi.org/10.1007/s00424-007-0406-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00424-007-0406-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049242471", 
              "https://doi.org/10.1007/s00424-007-0406-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1050304680", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20325-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050304680", 
              "https://doi.org/10.1007/978-3-319-20325-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-20325-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050304680", 
              "https://doi.org/10.1007/978-3-319-20325-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4948396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050392579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/20/34/342201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050473864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4891346", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053585969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsnano.5b07020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055137579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp004519t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056045291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp004519t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056045291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl203956q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056219087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nn4045358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056225612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1421638", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057705093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1807566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057823621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1897425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057831101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2010605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057835792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2969045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057888452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3366724", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057942374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3474960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057957975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.368047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057999470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4866607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058090604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/27/41/414003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059117657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.31.805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060537812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.31.805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060537812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.097601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.097601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060753033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.49.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.49.57", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060787982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.196806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060829331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.93.196806", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060829331"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.59.615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.59.615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1135923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062454986"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1183640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062461351"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s1600576716020057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1074241492"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4974953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083745051"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Spectroscopic measurements of current-voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference. This general-mode I-V method allows three orders of magnitude faster measurement rates than presently possible. The technique is demonstrated by acquiring I-V curves in ferroelectric nanocapacitors, yielding >100,000 I-V curves in <20\u2009min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid I-V measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-017-02455-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7475322", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Ultrafast current imaging by Bayesian inversion", 
        "pagination": "513", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8e17ba12b312a090102694e86f72e21f71d57ce1102514f86f5f462c527c12c5"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29410417"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-017-02455-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1100755968"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-017-02455-7", 
          "https://app.dimensions.ai/details/publication/pub.1100755968"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T17:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000552.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-017-02455-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-02455-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-02455-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-02455-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-02455-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    353 TRIPLES      21 PREDICATES      90 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-017-02455-7 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N50d047d59ae947aa8788102998bbf033
    4 schema:citation sg:pub.10.1007/978-3-319-15588-3
    5 sg:pub.10.1007/978-3-319-20325-6
    6 sg:pub.10.1007/978-94-017-2482-1_9
    7 sg:pub.10.1007/s00424-007-0406-0
    8 sg:pub.10.1007/s10853-009-3699-x
    9 sg:pub.10.1038/nature05881
    10 sg:pub.10.1038/ncomms13290
    11 sg:pub.10.1038/ncomms7550
    12 sg:pub.10.1038/nmat2373
    13 sg:pub.10.1038/nmat4395
    14 sg:pub.10.1038/nnano.2012.38
    15 sg:pub.10.1038/nnano.2014.157
    16 sg:pub.10.1038/nnano.2015.191
    17 sg:pub.10.1038/nphys2321
    18 sg:pub.10.1038/nprot.2012.047
    19 sg:pub.10.1038/srep26606
    20 sg:pub.10.1038/srep30557
    21 sg:pub.10.1038/srep30579
    22 sg:pub.10.1038/srep31625
    23 https://app.dimensions.ai/details/publication/pub.1050304680
    24 https://doi.org/10.1002/adfm.201203422
    25 https://doi.org/10.1002/adfm.201300079
    26 https://doi.org/10.1002/adma.200502711
    27 https://doi.org/10.1016/j.cap.2011.05.017
    28 https://doi.org/10.1016/j.ccr.2009.01.024
    29 https://doi.org/10.1016/s0167-5729(99)00003-5
    30 https://doi.org/10.1021/acsnano.5b07020
    31 https://doi.org/10.1021/jp004519t
    32 https://doi.org/10.1021/nl203956q
    33 https://doi.org/10.1021/nn4045358
    34 https://doi.org/10.1063/1.1421638
    35 https://doi.org/10.1063/1.1807566
    36 https://doi.org/10.1063/1.1897425
    37 https://doi.org/10.1063/1.2010605
    38 https://doi.org/10.1063/1.2969045
    39 https://doi.org/10.1063/1.3366724
    40 https://doi.org/10.1063/1.3474960
    41 https://doi.org/10.1063/1.368047
    42 https://doi.org/10.1063/1.4866607
    43 https://doi.org/10.1063/1.4884422
    44 https://doi.org/10.1063/1.4891346
    45 https://doi.org/10.1063/1.4948396
    46 https://doi.org/10.1063/1.4948601
    47 https://doi.org/10.1063/1.4974953
    48 https://doi.org/10.1080/00150190390222510
    49 https://doi.org/10.1080/00150199408244739
    50 https://doi.org/10.1080/10584589408223886
    51 https://doi.org/10.1088/0953-8984/20/34/342201
    52 https://doi.org/10.1088/0957-4484/27/41/414003
    53 https://doi.org/10.1088/0965-0393/21/7/075001
    54 https://doi.org/10.1103/physrevb.31.805
    55 https://doi.org/10.1103/physrevlett.100.097601
    56 https://doi.org/10.1103/physrevlett.49.57
    57 https://doi.org/10.1103/physrevlett.93.196806
    58 https://doi.org/10.1103/revmodphys.59.615
    59 https://doi.org/10.1107/s1600576716020057
    60 https://doi.org/10.1126/science.1066974
    61 https://doi.org/10.1126/science.1072640
    62 https://doi.org/10.1126/science.1129564
    63 https://doi.org/10.1126/science.1135923
    64 https://doi.org/10.1126/science.1183640
    65 schema:datePublished 2018-12
    66 schema:datePublishedReg 2018-12-01
    67 schema:description Spectroscopic measurements of current-voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference. This general-mode I-V method allows three orders of magnitude faster measurement rates than presently possible. The technique is demonstrated by acquiring I-V curves in ferroelectric nanocapacitors, yielding >100,000 I-V curves in <20 min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid I-V measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy.
    68 schema:genre research_article
    69 schema:inLanguage en
    70 schema:isAccessibleForFree true
    71 schema:isPartOf Nc4b58894e04944d9bbce2e3b2012f325
    72 Nea8b4db10ac348878e8c943d443c879e
    73 sg:journal.1043282
    74 schema:name Ultrafast current imaging by Bayesian inversion
    75 schema:pagination 513
    76 schema:productId N4c988a578c1b49109ddf36b39211feec
    77 N6924b8b739284b06b2d21b33e2dcf58e
    78 N7e7a96150c3743b598549d8562be280f
    79 Na4c4493856a04ef0a0a5f08acbc77586
    80 Nfaaf416c02194706b4cb8ea4e30ae2c9
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100755968
    82 https://doi.org/10.1038/s41467-017-02455-7
    83 schema:sdDatePublished 2019-04-10T17:38
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N299f0032aecb47a1b91fb7f46c13bf54
    86 schema:url https://www.nature.com/articles/s41467-017-02455-7
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N150e7ec88d734edeb4029f902b45c8da rdf:first sg:person.0623260666.89
    91 rdf:rest N66a5747b96ff42f28444d62e44f9f6da
    92 N279d793648fc484c88af0d7d7e2a5652 rdf:first Nc560aee50ee74247b9ce57935e423b6f
    93 rdf:rest N3e142b033fb641a9bcdd27895f9c743a
    94 N299f0032aecb47a1b91fb7f46c13bf54 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 N3277fefdad2b4f00a288e02adaccb9f6 rdf:first sg:person.0770402325.83
    97 rdf:rest rdf:nil
    98 N3e142b033fb641a9bcdd27895f9c743a rdf:first sg:person.01126106075.14
    99 rdf:rest N59f98bb338844605a21fbd907fe4aeb4
    100 N3e50bf1259f747a09cf0bf5ebaca81c6 rdf:first sg:person.012513734652.05
    101 rdf:rest N6567a196354c48bc844b22ea1f55b191
    102 N4c988a578c1b49109ddf36b39211feec schema:name doi
    103 schema:value 10.1038/s41467-017-02455-7
    104 rdf:type schema:PropertyValue
    105 N50d047d59ae947aa8788102998bbf033 rdf:first sg:person.0742201540.04
    106 rdf:rest N3e50bf1259f747a09cf0bf5ebaca81c6
    107 N59f98bb338844605a21fbd907fe4aeb4 rdf:first sg:person.0605640642.53
    108 rdf:rest N150e7ec88d734edeb4029f902b45c8da
    109 N6567a196354c48bc844b22ea1f55b191 rdf:first sg:person.01141164150.87
    110 rdf:rest N279d793648fc484c88af0d7d7e2a5652
    111 N66a5747b96ff42f28444d62e44f9f6da rdf:first Nd8fd87c7eefd41d0864fa5315c791064
    112 rdf:rest Ndd31de98e4c5481187c3574a8c747533
    113 N6924b8b739284b06b2d21b33e2dcf58e schema:name readcube_id
    114 schema:value 8e17ba12b312a090102694e86f72e21f71d57ce1102514f86f5f462c527c12c5
    115 rdf:type schema:PropertyValue
    116 N7e7a96150c3743b598549d8562be280f schema:name dimensions_id
    117 schema:value pub.1100755968
    118 rdf:type schema:PropertyValue
    119 Na4c4493856a04ef0a0a5f08acbc77586 schema:name nlm_unique_id
    120 schema:value 101528555
    121 rdf:type schema:PropertyValue
    122 Nbeab87e50dc746c69c2191a7d10e8701 rdf:first sg:person.01141047523.38
    123 rdf:rest N3277fefdad2b4f00a288e02adaccb9f6
    124 Nc4b58894e04944d9bbce2e3b2012f325 schema:issueNumber 1
    125 rdf:type schema:PublicationIssue
    126 Nc560aee50ee74247b9ce57935e423b6f schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    127 schema:familyName Maksymovych
    128 schema:givenName P.
    129 rdf:type schema:Person
    130 Nd8fd87c7eefd41d0864fa5315c791064 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    131 schema:familyName Archibald
    132 schema:givenName R.
    133 rdf:type schema:Person
    134 Ndd31de98e4c5481187c3574a8c747533 rdf:first sg:person.01207277350.84
    135 rdf:rest Nbeab87e50dc746c69c2191a7d10e8701
    136 Nea8b4db10ac348878e8c943d443c879e schema:volumeNumber 9
    137 rdf:type schema:PublicationVolume
    138 Nfaaf416c02194706b4cb8ea4e30ae2c9 schema:name pubmed_id
    139 schema:value 29410417
    140 rdf:type schema:PropertyValue
    141 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Physical Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Other Physical Sciences
    146 rdf:type schema:DefinedTerm
    147 sg:grant.7475322 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-02455-7
    148 rdf:type schema:MonetaryGrant
    149 sg:journal.1043282 schema:issn 2041-1723
    150 schema:name Nature Communications
    151 rdf:type schema:Periodical
    152 sg:person.01126106075.14 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
    153 schema:familyName Kim
    154 schema:givenName Y.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126106075.14
    156 rdf:type schema:Person
    157 sg:person.01141047523.38 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    158 schema:familyName Jesse
    159 schema:givenName S.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141047523.38
    161 rdf:type schema:Person
    162 sg:person.01141164150.87 schema:affiliation https://www.grid.ac/institutes/grid.425082.9
    163 schema:familyName Morozovska
    164 schema:givenName A. N.
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141164150.87
    166 rdf:type schema:Person
    167 sg:person.01207277350.84 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    168 schema:familyName Kalinin
    169 schema:givenName S. V.
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01207277350.84
    171 rdf:type schema:Person
    172 sg:person.012513734652.05 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    173 schema:familyName Law
    174 schema:givenName K. J. H.
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012513734652.05
    176 rdf:type schema:Person
    177 sg:person.0605640642.53 schema:affiliation https://www.grid.ac/institutes/grid.440736.2
    178 schema:familyName Lu
    179 schema:givenName X.
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605640642.53
    181 rdf:type schema:Person
    182 sg:person.0623260666.89 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
    183 schema:familyName Alexe
    184 schema:givenName M.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623260666.89
    186 rdf:type schema:Person
    187 sg:person.0742201540.04 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    188 schema:familyName Somnath
    189 schema:givenName S.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742201540.04
    191 rdf:type schema:Person
    192 sg:person.0770402325.83 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    193 schema:familyName Vasudevan
    194 schema:givenName R. K.
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770402325.83
    196 rdf:type schema:Person
    197 sg:pub.10.1007/978-3-319-15588-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004128643
    198 https://doi.org/10.1007/978-3-319-15588-3
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/978-3-319-20325-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050304680
    201 https://doi.org/10.1007/978-3-319-20325-6
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/978-94-017-2482-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006775477
    204 https://doi.org/10.1007/978-94-017-2482-1_9
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s00424-007-0406-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049242471
    207 https://doi.org/10.1007/s00424-007-0406-0
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s10853-009-3699-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045393909
    210 https://doi.org/10.1007/s10853-009-3699-x
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature05881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416742
    213 https://doi.org/10.1038/nature05881
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/ncomms13290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012444615
    216 https://doi.org/10.1038/ncomms13290
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/ncomms7550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044250976
    219 https://doi.org/10.1038/ncomms7550
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nmat2373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037186125
    222 https://doi.org/10.1038/nmat2373
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nmat4395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039532324
    225 https://doi.org/10.1038/nmat4395
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nnano.2012.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015783149
    228 https://doi.org/10.1038/nnano.2012.38
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nnano.2014.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027239552
    231 https://doi.org/10.1038/nnano.2014.157
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nnano.2015.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024275013
    234 https://doi.org/10.1038/nnano.2015.191
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nphys2321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034089412
    237 https://doi.org/10.1038/nphys2321
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nprot.2012.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013400325
    240 https://doi.org/10.1038/nprot.2012.047
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/srep26606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025239523
    243 https://doi.org/10.1038/srep26606
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/srep30557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034961972
    246 https://doi.org/10.1038/srep30557
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/srep30579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029010926
    249 https://doi.org/10.1038/srep30579
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/srep31625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017894230
    252 https://doi.org/10.1038/srep31625
    253 rdf:type schema:CreativeWork
    254 https://app.dimensions.ai/details/publication/pub.1050304680 schema:CreativeWork
    255 https://doi.org/10.1002/adfm.201203422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003931278
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1002/adfm.201300079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006344829
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1002/adma.200502711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034587340
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1016/j.cap.2011.05.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045370956
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1016/j.ccr.2009.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038941621
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1016/s0167-5729(99)00003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028033767
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1021/acsnano.5b07020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137579
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1021/jp004519t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056045291
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1021/nl203956q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219087
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1021/nn4045358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225612
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1063/1.1421638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057705093
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1063/1.1807566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057823621
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1063/1.1897425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057831101
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1063/1.2010605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057835792
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1063/1.2969045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057888452
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1063/1.3366724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057942374
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1063/1.3474960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057957975
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1063/1.368047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057999470
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1063/1.4866607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058090604
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1063/1.4884422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014919435
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1063/1.4891346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053585969
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1063/1.4948396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050392579
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1063/1.4948601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042353464
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1063/1.4974953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083745051
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1080/00150190390222510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006018737
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1080/00150199408244739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035835310
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1080/10584589408223886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016851837
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1088/0953-8984/20/34/342201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050473864
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1088/0957-4484/27/41/414003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059117657
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1088/0965-0393/21/7/075001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030685165
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1103/physrevb.31.805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060537812
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1103/physrevlett.100.097601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753033
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1103/physrevlett.49.57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787982
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1103/physrevlett.93.196806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060829331
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1103/revmodphys.59.615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839123
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1107/s1600576716020057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074241492
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1126/science.1066974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011175990
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1126/science.1072640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048889932
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1126/science.1129564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011745882
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1126/science.1135923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062454986
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1126/science.1183640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062461351
    336 rdf:type schema:CreativeWork
    337 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
    338 schema:name Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    339 Computer Science and Mathematics Division, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    340 Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, 37831, Oak Ridge, TN, USA
    341 rdf:type schema:Organization
    342 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
    343 schema:name School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), 16419, Suwon, Republic of Korea
    344 rdf:type schema:Organization
    345 https://www.grid.ac/institutes/grid.425082.9 schema:alternateName Institute of Physics
    346 schema:name Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, 03028, Kyiv, Ukraine
    347 rdf:type schema:Organization
    348 https://www.grid.ac/institutes/grid.440736.2 schema:alternateName Xidian University
    349 schema:name The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, 710071, Xi’an, Shaanxi, China
    350 rdf:type schema:Organization
    351 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
    352 schema:name Department of Physics, University of Warwick, CV4 7AL, Coventry, UK
    353 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...