Functional mapping and annotation of genetic associations with FUMA View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

Kyoko Watanabe, Erdogan Taskesen, Arjen van Bochoven, Danielle Posthuma

ABSTRACT

A main challenge in genome-wide association studies (GWAS) is to pinpoint possible causal variants. Results from GWAS typically do not directly translate into causal variants because the majority of hits are in non-coding or intergenic regions, and the presence of linkage disequilibrium leads to effects being statistically spread out across multiple variants. Post-GWAS annotation facilitates the selection of most likely causal variant(s). Multiple resources are available for post-GWAS annotation, yet these can be time consuming and do not provide integrated visual aids for data interpretation. We, therefore, develop FUMA: an integrative web-based platform using information from multiple biological resources to facilitate functional annotation of GWAS results, gene prioritization and interactive visualization. FUMA accommodates positional, expression quantitative trait loci (eQTL) and chromatin interaction mappings, and provides gene-based, pathway and tissue enrichment results. FUMA results directly aid in generating hypotheses that are testable in functional experiments aimed at proving causal relations. More... »

PAGES

1826

References to SciGraph publications

  • 2016-12. The Ensembl Variant Effect Predictor in GENOME BIOLOGY
  • 2013-10. Systematic identification of trans eQTLs as putative drivers of known disease associations in NATURE GENETICS
  • 2014-10. Genetic variability in the regulation of gene expression in ten regions of the human brain in NATURE NEUROSCIENCE
  • 2016-08. Analysis of protein-coding genetic variation in 60,706 humans in NATURE
  • 2016-11. Translating genome-wide association findings into new therapeutics for psychiatry in NATURE NEUROSCIENCE
  • 2016-12. Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23 in GENOME BIOLOGY
  • 2015-02. Genetic studies of body mass index yield new insights for obesity biology in NATURE
  • 2014-07. Biological insights from 108 schizophrenia-associated genetic loci in NATURE
  • 2012-03. ChromHMM: automating chromatin-state discovery and characterization in NATURE METHODS
  • 2015-12. LocusTrack: Integrated visualization of GWAS results and genomic annotation in SOURCE CODE FOR BIOLOGY AND MEDICINE
  • 2010-12. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci in NATURE GENETICS
  • 2014-01. Post-GWAS: where next? More samples, more SNPs or more biology? in HEREDITY
  • 2015-10. A global reference for human genetic variation in NATURE
  • 2015-02. Integrative analysis of 111 reference human epigenomes in NATURE
  • 2017-01. Identification of context-dependent expression quantitative trait loci in whole blood in NATURE GENETICS
  • 2014-11. Defining the role of common variation in the genomic and biological architecture of adult human height in NATURE GENETICS
  • 2016-05. Genome-wide association study identifies 74 loci associated with educational attainment in NATURE
  • 2015-12. Biological interpretation of genome-wide association studies using predicted gene functions in NATURE COMMUNICATIONS
  • 2014-03. A general framework for estimating the relative pathogenicity of human genetic variants in NATURE GENETICS
  • 2012-09. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2016-10. Chromosome conformation elucidates regulatory relationships in developing human brain in NATURE
  • 2015-06. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C in NATURE GENETICS
  • 2015-12. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome in EPIGENETICS & CHROMATIN
  • 2015-12. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci in NATURE COMMUNICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-017-01261-5

    DOI

    http://dx.doi.org/10.1038/s41467-017-01261-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092917882

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29184056


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Crohn Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Predisposition to Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Internet", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Linkage Disequilibrium", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Annotation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "VU University Amsterdam", 
              "id": "https://www.grid.ac/institutes/grid.12380.38", 
              "name": [
                "Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Kyoko", 
            "id": "sg:person.013400105157.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400105157.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "VU University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.16872.3a", 
              "name": [
                "Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands", 
                "VU University Medical Center (VUMC), Alzheimercentrum, 1081 HV, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taskesen", 
            "givenName": "Erdogan", 
            "id": "sg:person.01345042647.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345042647.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "VU University Amsterdam", 
              "id": "https://www.grid.ac/institutes/grid.12380.38", 
              "name": [
                "Faculty of Science, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Bochoven", 
            "givenName": "Arjen", 
            "id": "sg:person.0647175641.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647175641.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Amsterdam Neuroscience", 
              "id": "https://www.grid.ac/institutes/grid.484519.5", 
              "name": [
                "Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands", 
                "Department of Clinical Genetics, VU University Medical Center, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Posthuma", 
            "givenName": "Danielle", 
            "id": "sg:person.01326615365.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326615365.18"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3389/fgene.2013.00280", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000078193"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000114273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gku1205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001175538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002657699"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkv1024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002844013"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1906", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003714959", 
              "https://doi.org/10.1038/nmeth.1906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0974-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005070991", 
              "https://doi.org/10.1186/s13059-016-0974-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-0974-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005070991", 
              "https://doi.org/10.1186/s13059-016-0974-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0074-7742(06)78008-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005526518"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006357119", 
              "https://doi.org/10.1038/ng.3097"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1078-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006999632", 
              "https://doi.org/10.1186/s13059-016-1078-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-016-1078-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006999632", 
              "https://doi.org/10.1186/s13059-016-1078-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007293699", 
              "https://doi.org/10.1038/ng.3737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2010.06.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009393113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010852527", 
              "https://doi.org/10.1038/nature17671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2756", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014945864", 
              "https://doi.org/10.1038/ng.2756"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1005492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017074777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1222794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017092582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019025470", 
              "https://doi.org/10.1038/ng.717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019025470", 
              "https://doi.org/10.1038/ng.717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/519795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019061180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020792304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021812064", 
              "https://doi.org/10.1038/nature15393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021916306", 
              "https://doi.org/10.1038/nature13595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022281897", 
              "https://doi.org/10.1038/nature19057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms6890", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022399023", 
              "https://doi.org/10.1038/ncomms6890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024600945", 
              "https://doi.org/10.1038/nature19847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024647736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026060589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026087862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3286", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026830910", 
              "https://doi.org/10.1038/ng.3286"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1001058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028371840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1262110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029707840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14248", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031836937", 
              "https://doi.org/10.1038/nature14248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-med-092112-142937", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032231399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/thg.2014.79", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032809734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.1001779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033632930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2013.52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033838553", 
              "https://doi.org/10.1038/hdy.2013.52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.137323.112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034124863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.09.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035198067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkj067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035890801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2011.11.029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036374470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13072-015-0050-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036388358", 
              "https://doi.org/10.1186/s13072-015-0050-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036490983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2016.10.061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036613055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btr260", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039284123"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043129662", 
              "https://doi.org/10.1038/ncomms10069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2478/bjmg-2014-0027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043795882"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbamcr.2014.05.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044282916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13029-015-0032-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044465370", 
              "https://doi.org/10.1186/s13029-015-0032-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13029-015-0032-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044465370", 
              "https://doi.org/10.1186/s13029-015-0032-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1502214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046520303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047459836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047459836"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050728268", 
              "https://doi.org/10.1038/ng.2892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.4411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052113052", 
              "https://doi.org/10.1038/nn.4411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1004714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052207812"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052242395", 
              "https://doi.org/10.1038/nn.3801"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053003561", 
              "https://doi.org/10.1038/nature14177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1196/annals.1326.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053403683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2174/1389201011314040008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069176660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/112268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085109414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/112268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085109414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/112268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085109414"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12", 
        "datePublishedReg": "2017-12-01", 
        "description": "A main challenge in genome-wide association studies (GWAS) is to pinpoint possible causal variants. Results from GWAS typically do not directly translate into causal variants because the majority of hits are in non-coding or intergenic regions, and the presence of linkage disequilibrium leads to effects being statistically spread out across multiple variants. Post-GWAS annotation facilitates the selection of most likely causal variant(s). Multiple resources are available for post-GWAS annotation, yet these can be time consuming and do not provide integrated visual aids for data interpretation. We, therefore, develop FUMA: an integrative web-based platform using information from multiple biological resources to facilitate functional annotation of GWAS results, gene prioritization and interactive visualization. FUMA accommodates positional, expression quantitative trait loci (eQTL) and chromatin interaction mappings, and provides gene-based, pathway and tissue enrichment results. FUMA results directly aid in generating hypotheses that are testable in functional experiments aimed at proving causal relations.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41467-017-01261-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6626623", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Functional mapping and annotation of genetic associations with FUMA", 
        "pagination": "1826", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8aa4522a45665e51090d54727c57878789ec77bd83813899e2812e0f32dfca9d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29184056"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101528555"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-017-01261-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092917882"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-017-01261-5", 
          "https://app.dimensions.ai/details/publication/pub.1092917882"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000528.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41467-017-01261-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01261-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01261-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01261-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01261-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    350 TRIPLES      21 PREDICATES      100 URIs      34 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-017-01261-5 schema:about N0af05b69575d48fba549fed678bdbb84
    2 N23e77956fd9843a980d68ad6b4a9e8f0
    3 N3e24a5fc70094fbd9e75203b7bf7de00
    4 N40f4e4bf5ff54993b3509171a7b03c50
    5 N42f8b4944dc54d6a8cc23fb245fb30c8
    6 Nb14ea5b928be46719fd00281715b9a9d
    7 Nbb498c9001584099b56f93bf13c2af2d
    8 Ncefdd39919d042b4aabd2bf4af9c62b7
    9 Nd048336399c14107b3880a0c6433de2a
    10 Ne7dd2b1597504737b1cae044c922b768
    11 Nf09a4c7cfeb140deb47168d56e36d650
    12 Nfb1326ce8b6e4d9a9bd8257bc591219c
    13 Nfbb51a63a653446ab5f759ff2d4937bf
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author N9c7e9cae451d490eacc0db87844ca96d
    17 schema:citation sg:pub.10.1038/hdy.2013.52
    18 sg:pub.10.1038/nature11247
    19 sg:pub.10.1038/nature13595
    20 sg:pub.10.1038/nature14177
    21 sg:pub.10.1038/nature14248
    22 sg:pub.10.1038/nature15393
    23 sg:pub.10.1038/nature17671
    24 sg:pub.10.1038/nature19057
    25 sg:pub.10.1038/nature19847
    26 sg:pub.10.1038/ncomms10069
    27 sg:pub.10.1038/ncomms6890
    28 sg:pub.10.1038/ng.2756
    29 sg:pub.10.1038/ng.2892
    30 sg:pub.10.1038/ng.3097
    31 sg:pub.10.1038/ng.3286
    32 sg:pub.10.1038/ng.3737
    33 sg:pub.10.1038/ng.717
    34 sg:pub.10.1038/nmeth.1906
    35 sg:pub.10.1038/nn.3801
    36 sg:pub.10.1038/nn.4411
    37 sg:pub.10.1186/s13029-015-0032-8
    38 sg:pub.10.1186/s13059-016-0974-4
    39 sg:pub.10.1186/s13059-016-1078-x
    40 sg:pub.10.1186/s13072-015-0050-4
    41 https://doi.org/10.1016/j.ajhg.2010.06.009
    42 https://doi.org/10.1016/j.ajhg.2011.11.029
    43 https://doi.org/10.1016/j.ajhg.2013.10.012
    44 https://doi.org/10.1016/j.bbamcr.2014.05.014
    45 https://doi.org/10.1016/j.cell.2016.09.037
    46 https://doi.org/10.1016/j.celrep.2016.10.061
    47 https://doi.org/10.1016/s0074-7742(06)78008-4
    48 https://doi.org/10.1017/thg.2014.79
    49 https://doi.org/10.1056/nejmoa1502214
    50 https://doi.org/10.1086/519795
    51 https://doi.org/10.1093/bioinformatics/btp644
    52 https://doi.org/10.1093/bioinformatics/btq419
    53 https://doi.org/10.1093/bioinformatics/btr260
    54 https://doi.org/10.1093/bioinformatics/bts191
    55 https://doi.org/10.1093/nar/gkj067
    56 https://doi.org/10.1093/nar/gkq603
    57 https://doi.org/10.1093/nar/gkt1229
    58 https://doi.org/10.1093/nar/gku1205
    59 https://doi.org/10.1093/nar/gkv1024
    60 https://doi.org/10.1093/nar/gkv1340
    61 https://doi.org/10.1101/112268
    62 https://doi.org/10.1101/gr.137323.112
    63 https://doi.org/10.1126/science.1222794
    64 https://doi.org/10.1126/science.1262110
    65 https://doi.org/10.1146/annurev-med-092112-142937
    66 https://doi.org/10.1196/annals.1326.039
    67 https://doi.org/10.1371/journal.pcbi.1004219
    68 https://doi.org/10.1371/journal.pcbi.1004714
    69 https://doi.org/10.1371/journal.pgen.1001058
    70 https://doi.org/10.1371/journal.pgen.1005492
    71 https://doi.org/10.1371/journal.pmed.1001779
    72 https://doi.org/10.2174/1389201011314040008
    73 https://doi.org/10.2478/bjmg-2014-0027
    74 https://doi.org/10.3389/fgene.2013.00280
    75 schema:datePublished 2017-12
    76 schema:datePublishedReg 2017-12-01
    77 schema:description A main challenge in genome-wide association studies (GWAS) is to pinpoint possible causal variants. Results from GWAS typically do not directly translate into causal variants because the majority of hits are in non-coding or intergenic regions, and the presence of linkage disequilibrium leads to effects being statistically spread out across multiple variants. Post-GWAS annotation facilitates the selection of most likely causal variant(s). Multiple resources are available for post-GWAS annotation, yet these can be time consuming and do not provide integrated visual aids for data interpretation. We, therefore, develop FUMA: an integrative web-based platform using information from multiple biological resources to facilitate functional annotation of GWAS results, gene prioritization and interactive visualization. FUMA accommodates positional, expression quantitative trait loci (eQTL) and chromatin interaction mappings, and provides gene-based, pathway and tissue enrichment results. FUMA results directly aid in generating hypotheses that are testable in functional experiments aimed at proving causal relations.
    78 schema:genre research_article
    79 schema:inLanguage en
    80 schema:isAccessibleForFree true
    81 schema:isPartOf N5c09fff17e08443f8b2993c450b5bfd5
    82 Ndaf77b1633f94fc1a175fc7f66395c3d
    83 sg:journal.1043282
    84 schema:name Functional mapping and annotation of genetic associations with FUMA
    85 schema:pagination 1826
    86 schema:productId N14e6edaec64c47d792844f7e944bf546
    87 N1baa34ecc0a04950b33bcb876fe3a48f
    88 N3fb1aa0a4b9e43e99815fc65c3831793
    89 N654465c2669647009af1df3158862c8a
    90 N88b92c5e5ff246f797ed063519d4a8bd
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092917882
    92 https://doi.org/10.1038/s41467-017-01261-5
    93 schema:sdDatePublished 2019-04-10T16:45
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N44fad0cf60c04f5fa066fe3ad6fe62e2
    96 schema:url https://www.nature.com/articles/s41467-017-01261-5
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N0af05b69575d48fba549fed678bdbb84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Databases, Genetic
    102 rdf:type schema:DefinedTerm
    103 N14e6edaec64c47d792844f7e944bf546 schema:name doi
    104 schema:value 10.1038/s41467-017-01261-5
    105 rdf:type schema:PropertyValue
    106 N1baa34ecc0a04950b33bcb876fe3a48f schema:name readcube_id
    107 schema:value 8aa4522a45665e51090d54727c57878789ec77bd83813899e2812e0f32dfca9d
    108 rdf:type schema:PropertyValue
    109 N23e77956fd9843a980d68ad6b4a9e8f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name Chromosome Mapping
    111 rdf:type schema:DefinedTerm
    112 N3e24a5fc70094fbd9e75203b7bf7de00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Internet
    114 rdf:type schema:DefinedTerm
    115 N3fb1aa0a4b9e43e99815fc65c3831793 schema:name pubmed_id
    116 schema:value 29184056
    117 rdf:type schema:PropertyValue
    118 N40f4e4bf5ff54993b3509171a7b03c50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Linkage Disequilibrium
    120 rdf:type schema:DefinedTerm
    121 N42f8b4944dc54d6a8cc23fb245fb30c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Genetic Predisposition to Disease
    123 rdf:type schema:DefinedTerm
    124 N44fad0cf60c04f5fa066fe3ad6fe62e2 schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 N5c09fff17e08443f8b2993c450b5bfd5 schema:volumeNumber 8
    127 rdf:type schema:PublicationVolume
    128 N654465c2669647009af1df3158862c8a schema:name dimensions_id
    129 schema:value pub.1092917882
    130 rdf:type schema:PropertyValue
    131 N6b80df9367b8444a9e86182771bdccfb rdf:first sg:person.0647175641.72
    132 rdf:rest Nd0c7509ee80b425c9ac0e7819af73a3c
    133 N88b92c5e5ff246f797ed063519d4a8bd schema:name nlm_unique_id
    134 schema:value 101528555
    135 rdf:type schema:PropertyValue
    136 N9c7e9cae451d490eacc0db87844ca96d rdf:first sg:person.013400105157.02
    137 rdf:rest Nbe94b043dd1d4dda8a0c44562409479f
    138 Nb14ea5b928be46719fd00281715b9a9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Chromatin
    140 rdf:type schema:DefinedTerm
    141 Nbb498c9001584099b56f93bf13c2af2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Humans
    143 rdf:type schema:DefinedTerm
    144 Nbe94b043dd1d4dda8a0c44562409479f rdf:first sg:person.01345042647.09
    145 rdf:rest N6b80df9367b8444a9e86182771bdccfb
    146 Ncefdd39919d042b4aabd2bf4af9c62b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Crohn Disease
    148 rdf:type schema:DefinedTerm
    149 Nd048336399c14107b3880a0c6433de2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Genome, Human
    151 rdf:type schema:DefinedTerm
    152 Nd0c7509ee80b425c9ac0e7819af73a3c rdf:first sg:person.01326615365.18
    153 rdf:rest rdf:nil
    154 Ndaf77b1633f94fc1a175fc7f66395c3d schema:issueNumber 1
    155 rdf:type schema:PublicationIssue
    156 Ne7dd2b1597504737b1cae044c922b768 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Computational Biology
    158 rdf:type schema:DefinedTerm
    159 Nf09a4c7cfeb140deb47168d56e36d650 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    160 schema:name Quantitative Trait Loci
    161 rdf:type schema:DefinedTerm
    162 Nfb1326ce8b6e4d9a9bd8257bc591219c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Genome-Wide Association Study
    164 rdf:type schema:DefinedTerm
    165 Nfbb51a63a653446ab5f759ff2d4937bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Molecular Sequence Annotation
    167 rdf:type schema:DefinedTerm
    168 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Biological Sciences
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Genetics
    173 rdf:type schema:DefinedTerm
    174 sg:grant.6626623 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-01261-5
    175 rdf:type schema:MonetaryGrant
    176 sg:journal.1043282 schema:issn 2041-1723
    177 schema:name Nature Communications
    178 rdf:type schema:Periodical
    179 sg:person.01326615365.18 schema:affiliation https://www.grid.ac/institutes/grid.484519.5
    180 schema:familyName Posthuma
    181 schema:givenName Danielle
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326615365.18
    183 rdf:type schema:Person
    184 sg:person.013400105157.02 schema:affiliation https://www.grid.ac/institutes/grid.12380.38
    185 schema:familyName Watanabe
    186 schema:givenName Kyoko
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400105157.02
    188 rdf:type schema:Person
    189 sg:person.01345042647.09 schema:affiliation https://www.grid.ac/institutes/grid.16872.3a
    190 schema:familyName Taskesen
    191 schema:givenName Erdogan
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345042647.09
    193 rdf:type schema:Person
    194 sg:person.0647175641.72 schema:affiliation https://www.grid.ac/institutes/grid.12380.38
    195 schema:familyName van Bochoven
    196 schema:givenName Arjen
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647175641.72
    198 rdf:type schema:Person
    199 sg:pub.10.1038/hdy.2013.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033838553
    200 https://doi.org/10.1038/hdy.2013.52
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    203 https://doi.org/10.1038/nature11247
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nature13595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021916306
    206 https://doi.org/10.1038/nature13595
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nature14177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003561
    209 https://doi.org/10.1038/nature14177
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nature14248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031836937
    212 https://doi.org/10.1038/nature14248
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
    215 https://doi.org/10.1038/nature15393
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nature17671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010852527
    218 https://doi.org/10.1038/nature17671
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature19057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022281897
    221 https://doi.org/10.1038/nature19057
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nature19847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024600945
    224 https://doi.org/10.1038/nature19847
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ncomms10069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043129662
    227 https://doi.org/10.1038/ncomms10069
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ncomms6890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022399023
    230 https://doi.org/10.1038/ncomms6890
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/ng.2756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014945864
    233 https://doi.org/10.1038/ng.2756
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/ng.2892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050728268
    236 https://doi.org/10.1038/ng.2892
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/ng.3097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006357119
    239 https://doi.org/10.1038/ng.3097
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/ng.3286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026830910
    242 https://doi.org/10.1038/ng.3286
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/ng.3737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007293699
    245 https://doi.org/10.1038/ng.3737
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/ng.717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019025470
    248 https://doi.org/10.1038/ng.717
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nmeth.1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003714959
    251 https://doi.org/10.1038/nmeth.1906
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nn.3801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052242395
    254 https://doi.org/10.1038/nn.3801
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nn.4411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052113052
    257 https://doi.org/10.1038/nn.4411
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1186/s13029-015-0032-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044465370
    260 https://doi.org/10.1186/s13029-015-0032-8
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1186/s13059-016-0974-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005070991
    263 https://doi.org/10.1186/s13059-016-0974-4
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1186/s13059-016-1078-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999632
    266 https://doi.org/10.1186/s13059-016-1078-x
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1186/s13072-015-0050-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036388358
    269 https://doi.org/10.1186/s13072-015-0050-4
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.ajhg.2010.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009393113
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/j.ajhg.2011.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036374470
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/j.ajhg.2013.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024647736
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/j.bbamcr.2014.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044282916
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/j.cell.2016.09.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035198067
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1016/j.celrep.2016.10.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036613055
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1016/s0074-7742(06)78008-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005526518
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1017/thg.2014.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032809734
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1056/nejmoa1502214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046520303
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1093/bioinformatics/btp644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000114273
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1093/bioinformatics/btq419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036490983
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/bioinformatics/btr260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039284123
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/bioinformatics/bts191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026060589
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/nar/gkj067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035890801
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/nar/gkq603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020792304
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1093/nar/gkt1229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047459836
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1093/nar/gku1205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001175538
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1093/nar/gkv1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002844013
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1093/nar/gkv1340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002657699
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1101/112268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085109414
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1101/gr.137323.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124863
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1126/science.1222794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017092582
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1126/science.1262110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029707840
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1146/annurev-med-092112-142937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032231399
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1196/annals.1326.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053403683
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1371/journal.pcbi.1004219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026087862
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1371/journal.pcbi.1004714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052207812
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1371/journal.pgen.1001058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028371840
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1371/journal.pgen.1005492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017074777
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1371/journal.pmed.1001779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033632930
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.2174/1389201011314040008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069176660
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.2478/bjmg-2014-0027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043795882
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.3389/fgene.2013.00280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000078193
    338 rdf:type schema:CreativeWork
    339 https://www.grid.ac/institutes/grid.12380.38 schema:alternateName VU University Amsterdam
    340 schema:name Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
    341 Faculty of Science, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
    342 rdf:type schema:Organization
    343 https://www.grid.ac/institutes/grid.16872.3a schema:alternateName VU University Medical Center
    344 schema:name Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
    345 VU University Medical Center (VUMC), Alzheimercentrum, 1081 HV, Amsterdam, The Netherlands
    346 rdf:type schema:Organization
    347 https://www.grid.ac/institutes/grid.484519.5 schema:alternateName Amsterdam Neuroscience
    348 schema:name Department of Clinical Genetics, VU University Medical Center, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
    349 Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, 1081 HV, Amsterdam, The Netherlands
    350 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...