Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

K. Iwaya, Y. Kohsaka, K. Okawa, T. Machida, M. S. Bahramy, T. Hanaguri, T. Sasagawa

ABSTRACT

A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi2.Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi2 and find the superconducting gap opening in all spin-polarised surface states. More... »

PAGES

976

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-017-01209-9

DOI

http://dx.doi.org/10.1038/s41467-017-01209-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092170319

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29042547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Emergent Matter Science", 
          "id": "https://www.grid.ac/institutes/grid.474689.0", 
          "name": [
            "RIKEN Center for Emergent Matter Science, 351-0198, Wako, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwaya", 
        "givenName": "K.", 
        "id": "sg:person.0752552204.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752552204.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Emergent Matter Science", 
          "id": "https://www.grid.ac/institutes/grid.474689.0", 
          "name": [
            "RIKEN Center for Emergent Matter Science, 351-0198, Wako, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohsaka", 
        "givenName": "Y.", 
        "id": "sg:person.0776270437.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776270437.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Laboratory for Materials and Structures, Tokyo Institute of Technology, 226-8503, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okawa", 
        "givenName": "K.", 
        "id": "sg:person.01315603401.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315603401.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Emergent Matter Science", 
          "id": "https://www.grid.ac/institutes/grid.474689.0", 
          "name": [
            "RIKEN Center for Emergent Matter Science, 351-0198, Wako, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Machida", 
        "givenName": "T.", 
        "id": "sg:person.07450237460.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450237460.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "RIKEN Center for Emergent Matter Science, 351-0198, Wako, Saitama, Japan", 
            "Department of Applied Physics, The University of Tokyo, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bahramy", 
        "givenName": "M. S.", 
        "id": "sg:person.0575401365.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575401365.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RIKEN Center for Emergent Matter Science", 
          "id": "https://www.grid.ac/institutes/grid.474689.0", 
          "name": [
            "RIKEN Center for Emergent Matter Science, 351-0198, Wako, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hanaguri", 
        "givenName": "T.", 
        "id": "sg:person.0645713256.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645713256.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Laboratory for Materials and Structures, Tokyo Institute of Technology, 226-8503, Yokohama, Kanagawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasagawa", 
        "givenName": "T.", 
        "id": "sg:person.013677701261.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677701261.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1259327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000995127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.035109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.035109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007967752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008227579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008227579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065345", 
          "https://doi.org/10.1038/nature08308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010065345", 
          "https://doi.org/10.1038/nature08308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1216466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014774321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1216466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014774321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.184516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015019097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.184516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015019097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(02)00018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015449553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0003-4916(02)00018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015449553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2006.10.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016838491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2010.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021177340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.017001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021909498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.017001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021909498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/51/1/117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021971750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.217002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022459971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.217002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022459971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.097001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022790435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.097001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022790435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.096407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026401354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.096407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026401354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.037004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027238372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029092004", 
          "https://doi.org/10.1038/nphys2933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030751646", 
          "https://doi.org/10.1038/nphys2744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.217001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039315896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.217001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039315896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040555612", 
          "https://doi.org/10.1038/nphys1762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.117001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040588290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.117001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040588290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.024504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040588641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.024504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040588641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2007.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041208656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041529798", 
          "https://doi.org/10.1038/ncomms9595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.83.1057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045115933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046566206", 
          "https://doi.org/10.1038/nphys3139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.020505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050965906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.020505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050965906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.054507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.054507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.144502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.014517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.014517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060651062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.097001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.097001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060758698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.177001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.177001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1600894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062440209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1222360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.81.113708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063126087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7566/jpsj.83.064703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073829821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083826496", 
          "https://doi.org/10.1038/ncomms14466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.115307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084198125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.115307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084198125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.134519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085285009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.134519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085285009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scib.2017.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085397624"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor \u03b2-PdBi2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in \u03b2-PdBi2.Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor \u03b2-PdBi2 and find the superconducting gap opening in all spin-polarised surface states.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-017-01209-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5905163", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5912495", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5906631", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Full-gap superconductivity in spin-polarised surface states of topological semimetal \u03b2-PdBi2", 
    "pagination": "976", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "37e336fa5f28b7652236dcdd92d66e33b3844a7b2706a4452d90ee1d1d49c5be"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29042547"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-017-01209-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092170319"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-017-01209-9", 
      "https://app.dimensions.ai/details/publication/pub.1092170319"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000563.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-017-01209-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01209-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01209-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01209-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-01209-9'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-017-01209-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N905432b958874d748d63efb35d504631
4 schema:citation sg:pub.10.1038/nature08308
5 sg:pub.10.1038/ncomms14466
6 sg:pub.10.1038/ncomms9595
7 sg:pub.10.1038/nphys1762
8 sg:pub.10.1038/nphys2744
9 sg:pub.10.1038/nphys2933
10 sg:pub.10.1038/nphys3139
11 https://doi.org/10.1016/j.cpc.2007.11.016
12 https://doi.org/10.1016/j.cpc.2010.08.005
13 https://doi.org/10.1016/j.jmmm.2006.10.141
14 https://doi.org/10.1016/j.scib.2017.05.008
15 https://doi.org/10.1016/s0003-4916(02)00018-0
16 https://doi.org/10.1088/1742-6596/51/1/117
17 https://doi.org/10.1103/physrevb.65.035109
18 https://doi.org/10.1103/physrevb.73.024504
19 https://doi.org/10.1103/physrevb.89.020505
20 https://doi.org/10.1103/physrevb.90.184516
21 https://doi.org/10.1103/physrevb.92.054507
22 https://doi.org/10.1103/physrevb.93.144502
23 https://doi.org/10.1103/physrevb.94.014517
24 https://doi.org/10.1103/physrevb.95.115307
25 https://doi.org/10.1103/physrevb.95.134519
26 https://doi.org/10.1103/physrevlett.100.096407
27 https://doi.org/10.1103/physrevlett.107.097001
28 https://doi.org/10.1103/physrevlett.110.117001
29 https://doi.org/10.1103/physrevlett.112.217001
30 https://doi.org/10.1103/physrevlett.114.017001
31 https://doi.org/10.1103/physrevlett.114.217002
32 https://doi.org/10.1103/physrevlett.115.177001
33 https://doi.org/10.1103/physrevlett.77.3865
34 https://doi.org/10.1103/physrevlett.87.037004
35 https://doi.org/10.1103/physrevlett.92.097001
36 https://doi.org/10.1103/physrevlett.93.196802
37 https://doi.org/10.1103/revmodphys.83.1057
38 https://doi.org/10.1126/sciadv.1600894
39 https://doi.org/10.1126/science.1216466
40 https://doi.org/10.1126/science.1222360
41 https://doi.org/10.1126/science.1259327
42 https://doi.org/10.1143/jpsj.81.113708
43 https://doi.org/10.7566/jpsj.83.064703
44 schema:datePublished 2017-12
45 schema:datePublishedReg 2017-12-01
46 schema:description A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi<sub>2</sub> that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi<sub>2</sub>.Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi<sub>2</sub> and find the superconducting gap opening in all spin-polarised surface states.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N58fe448e0eeb4cb4822933f543e59d1e
51 N7008b2341e6e420b8d9523455eb8d6a2
52 sg:journal.1043282
53 schema:name Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2
54 schema:pagination 976
55 schema:productId N11196ef381b3437f9b8c1ba527e6b8f3
56 N61503fa959bd4b1aaed93e124f0eaeb4
57 N9c0b252a075844ce81593a779863a2bd
58 Nc83a82a8cb4e44ff888936e518f7c12d
59 Ne7c5d870f9794edcb574286f4e71af17
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092170319
61 https://doi.org/10.1038/s41467-017-01209-9
62 schema:sdDatePublished 2019-04-10T18:28
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N59fe8c73c815430ebb5941a78ecd22d3
65 schema:url https://www.nature.com/articles/s41467-017-01209-9
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N11196ef381b3437f9b8c1ba527e6b8f3 schema:name readcube_id
70 schema:value 37e336fa5f28b7652236dcdd92d66e33b3844a7b2706a4452d90ee1d1d49c5be
71 rdf:type schema:PropertyValue
72 N25803ce6b160498fa0cc2b8e3834bd1f rdf:first sg:person.0645713256.86
73 rdf:rest N35cb9f21a4744564b73f5f0990e0a8a9
74 N35cb9f21a4744564b73f5f0990e0a8a9 rdf:first sg:person.013677701261.59
75 rdf:rest rdf:nil
76 N58fe448e0eeb4cb4822933f543e59d1e schema:volumeNumber 8
77 rdf:type schema:PublicationVolume
78 N59fe8c73c815430ebb5941a78ecd22d3 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N61503fa959bd4b1aaed93e124f0eaeb4 schema:name nlm_unique_id
81 schema:value 101528555
82 rdf:type schema:PropertyValue
83 N7008b2341e6e420b8d9523455eb8d6a2 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 N8d1cab804dbf4716a7360b6bee3d2821 rdf:first sg:person.0776270437.65
86 rdf:rest N9099c6e80e1c453d98cd11b72f99c995
87 N905432b958874d748d63efb35d504631 rdf:first sg:person.0752552204.52
88 rdf:rest N8d1cab804dbf4716a7360b6bee3d2821
89 N9099c6e80e1c453d98cd11b72f99c995 rdf:first sg:person.01315603401.51
90 rdf:rest Na2f3484ec44b4e8aae38d1a9f08c1544
91 N9c0b252a075844ce81593a779863a2bd schema:name dimensions_id
92 schema:value pub.1092170319
93 rdf:type schema:PropertyValue
94 Na2f3484ec44b4e8aae38d1a9f08c1544 rdf:first sg:person.07450237460.19
95 rdf:rest Ndf782a692c4648b099d915b580252321
96 Nc83a82a8cb4e44ff888936e518f7c12d schema:name doi
97 schema:value 10.1038/s41467-017-01209-9
98 rdf:type schema:PropertyValue
99 Ndf782a692c4648b099d915b580252321 rdf:first sg:person.0575401365.25
100 rdf:rest N25803ce6b160498fa0cc2b8e3834bd1f
101 Ne7c5d870f9794edcb574286f4e71af17 schema:name pubmed_id
102 schema:value 29042547
103 rdf:type schema:PropertyValue
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
108 schema:name Materials Engineering
109 rdf:type schema:DefinedTerm
110 sg:grant.5905163 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-01209-9
111 rdf:type schema:MonetaryGrant
112 sg:grant.5906631 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-01209-9
113 rdf:type schema:MonetaryGrant
114 sg:grant.5912495 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-01209-9
115 rdf:type schema:MonetaryGrant
116 sg:journal.1043282 schema:issn 2041-1723
117 schema:name Nature Communications
118 rdf:type schema:Periodical
119 sg:person.01315603401.51 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
120 schema:familyName Okawa
121 schema:givenName K.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315603401.51
123 rdf:type schema:Person
124 sg:person.013677701261.59 schema:affiliation https://www.grid.ac/institutes/grid.32197.3e
125 schema:familyName Sasagawa
126 schema:givenName T.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677701261.59
128 rdf:type schema:Person
129 sg:person.0575401365.25 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
130 schema:familyName Bahramy
131 schema:givenName M. S.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575401365.25
133 rdf:type schema:Person
134 sg:person.0645713256.86 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
135 schema:familyName Hanaguri
136 schema:givenName T.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645713256.86
138 rdf:type schema:Person
139 sg:person.07450237460.19 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
140 schema:familyName Machida
141 schema:givenName T.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450237460.19
143 rdf:type schema:Person
144 sg:person.0752552204.52 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
145 schema:familyName Iwaya
146 schema:givenName K.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752552204.52
148 rdf:type schema:Person
149 sg:person.0776270437.65 schema:affiliation https://www.grid.ac/institutes/grid.474689.0
150 schema:familyName Kohsaka
151 schema:givenName Y.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776270437.65
153 rdf:type schema:Person
154 sg:pub.10.1038/nature08308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010065345
155 https://doi.org/10.1038/nature08308
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ncomms14466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083826496
158 https://doi.org/10.1038/ncomms14466
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/ncomms9595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041529798
161 https://doi.org/10.1038/ncomms9595
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nphys1762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040555612
164 https://doi.org/10.1038/nphys1762
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nphys2744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030751646
167 https://doi.org/10.1038/nphys2744
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nphys2933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029092004
170 https://doi.org/10.1038/nphys2933
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nphys3139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046566206
173 https://doi.org/10.1038/nphys3139
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.cpc.2007.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041208656
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.cpc.2010.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021177340
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jmmm.2006.10.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016838491
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.scib.2017.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085397624
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0003-4916(02)00018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015449553
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1088/1742-6596/51/1/117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021971750
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevb.65.035109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007967752
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevb.73.024504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040588641
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevb.89.020505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050965906
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevb.90.184516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015019097
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.92.054507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646673
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.93.144502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649804
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.94.014517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060651062
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.95.115307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084198125
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.95.134519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085285009
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.100.096407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026401354
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevlett.107.097001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758698
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.110.117001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040588290
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.112.217001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039315896
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.114.017001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021909498
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.114.217002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022459971
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.115.177001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764316
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.87.037004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027238372
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.92.097001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022790435
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.93.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008227579
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/revmodphys.83.1057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115933
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/sciadv.1600894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062440209
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1216466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014774321
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.1222360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466698
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.1259327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000995127
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1143/jpsj.81.113708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063126087
238 rdf:type schema:CreativeWork
239 https://doi.org/10.7566/jpsj.83.064703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073829821
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
242 schema:name Department of Applied Physics, The University of Tokyo, Hongo, 113-8656, Bunkyo-ku, Tokyo, Japan
243 RIKEN Center for Emergent Matter Science, 351-0198, Wako, Saitama, Japan
244 rdf:type schema:Organization
245 https://www.grid.ac/institutes/grid.32197.3e schema:alternateName Tokyo Institute of Technology
246 schema:name Laboratory for Materials and Structures, Tokyo Institute of Technology, 226-8503, Yokohama, Kanagawa, Japan
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.474689.0 schema:alternateName RIKEN Center for Emergent Matter Science
249 schema:name RIKEN Center for Emergent Matter Science, 351-0198, Wako, Saitama, Japan
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...