Crossing the threshold of ultrafast laser writing in bulk silicon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-10-03

AUTHORS

Margaux Chanal, Vladimir Yu. Fedorov, Maxime Chambonneau, Raphaël Clady, Stelios Tzortzakis, David Grojo

ABSTRACT

An important challenge in the field of three-dimensional ultrafast laser processing is to achieve permanent modifications in the bulk of silicon and narrow-gap materials. Recent attempts by increasing the energy of infrared ultrashort pulses have simply failed. Here, we establish that it is because focusing with a maximum numerical aperture of about 1.5 with conventional schemes does not allow overcoming strong nonlinear and plasma effects in the pre-focal region. We circumvent this limitation by exploiting solid-immersion focusing, in analogy to techniques applied in advanced microscopy and lithography. By creating the conditions for an interaction with an extreme numerical aperture near 3 in a perfect spherical sample, repeatable femtosecond optical breakdown and controllable refractive index modifications are achieved inside silicon. This opens the door to the direct writing of three-dimensional monolithic devices for silicon photonics. It also provides perspectives for new strong-field physics and warm-dense-matter plasma experiments. More... »

PAGES

773

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-017-00907-8

DOI

http://dx.doi.org/10.1038/s41467-017-00907-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092015762

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28974678


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chanal", 
        "givenName": "Margaux", 
        "id": "sg:person.01310143611.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310143611.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar", 
            "P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedorov", 
        "givenName": "Vladimir Yu.", 
        "id": "sg:person.016565601521.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016565601521.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chambonneau", 
        "givenName": "Maxime", 
        "id": "sg:person.0710221636.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710221636.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clady", 
        "givenName": "Rapha\u00ebl", 
        "id": "sg:person.0677652270.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677652270.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Technology Department, University of Crete, 71003, Heraklion, Greece", 
          "id": "http://www.grid.ac/institutes/grid.8127.c", 
          "name": [
            "Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar", 
            "Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology\u2014Hellas (FORTH), P.O. Box 1527, GR-71110, Heraklion, Greece", 
            "Materials Science and Technology Department, University of Crete, 71003, Heraklion, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tzortzakis", 
        "givenName": "Stelios", 
        "id": "sg:person.01323677153.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323677153.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France", 
          "id": "http://www.grid.ac/institutes/grid.5399.6", 
          "name": [
            "Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grojo", 
        "givenName": "David", 
        "id": "sg:person.01103632507.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103632507.72"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphoton.2009.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052376122", 
          "https://doi.org/10.1038/nphoton.2009.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042748029", 
          "https://doi.org/10.1038/ncomms1449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35089130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041938448", 
          "https://doi.org/10.1038/35089130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021629982", 
          "https://doi.org/10.1038/nphoton.2008.29"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-015-9238-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001581377", 
          "https://doi.org/10.1007/s00339-015-9238-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep16199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012070854", 
          "https://doi.org/10.1038/srep16199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature18619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039975644", 
          "https://doi.org/10.1038/nature18619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/432822a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045181591", 
          "https://doi.org/10.1038/432822a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41566-017-0004-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091849443", 
          "https://doi.org/10.1038/s41566-017-0004-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-10-03", 
    "datePublishedReg": "2017-10-03", 
    "description": "An important challenge in the field of three-dimensional ultrafast laser processing is to achieve permanent modifications in the bulk of silicon and narrow-gap materials. Recent attempts by increasing the energy of infrared ultrashort pulses have simply failed. Here, we establish that it is because focusing with a maximum numerical aperture of about 1.5 with conventional schemes does not allow overcoming strong nonlinear and plasma effects in the pre-focal region. We circumvent this limitation by exploiting solid-immersion focusing, in analogy to techniques applied in advanced microscopy and lithography. By creating the conditions for an interaction with an extreme numerical aperture near 3 in a perfect spherical sample, repeatable femtosecond optical breakdown and controllable refractive index modifications are achieved inside silicon. This opens the door to the direct writing of three-dimensional monolithic devices for silicon photonics. It also provides perspectives for new strong-field physics and warm-dense-matter plasma experiments.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-017-00907-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6622265", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5302782", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "numerical aperture", 
      "strong-field physics", 
      "femtosecond optical breakdown", 
      "refractive index modification", 
      "ultrafast laser processing", 
      "infrared ultrashort pulses", 
      "narrow-gap materials", 
      "maximum numerical aperture", 
      "bulk of silicon", 
      "optical breakdown", 
      "silicon photonics", 
      "ultrafast laser", 
      "ultrashort pulses", 
      "plasma experiments", 
      "index modification", 
      "direct writing", 
      "laser processing", 
      "bulk silicon", 
      "pre-focal region", 
      "monolithic device", 
      "silicon", 
      "advanced microscopy", 
      "spherical samples", 
      "aperture", 
      "photonics", 
      "laser", 
      "permanent modification", 
      "physics", 
      "pulses", 
      "lithography", 
      "conventional schemes", 
      "energy", 
      "focusing", 
      "microscopy", 
      "bulk", 
      "field", 
      "devices", 
      "materials", 
      "threshold", 
      "analogy", 
      "important challenge", 
      "interaction", 
      "experiments", 
      "processing", 
      "modification", 
      "breakdown", 
      "scheme", 
      "recent attempts", 
      "region", 
      "technique", 
      "conditions", 
      "door", 
      "samples", 
      "limitations", 
      "effect", 
      "challenges", 
      "attempt", 
      "writing", 
      "perspective"
    ], 
    "name": "Crossing the threshold of ultrafast laser writing in bulk silicon", 
    "pagination": "773", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092015762"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-017-00907-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28974678"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-017-00907-8", 
      "https://app.dimensions.ai/details/publication/pub.1092015762"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_754.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-017-00907-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00907-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00907-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00907-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00907-8'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      96 URIs      76 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-017-00907-8 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:0205
4 anzsrc-for:10
5 anzsrc-for:1007
6 schema:author N1b8fe848ee1a4938856144957f29675f
7 schema:citation sg:pub.10.1007/s00339-015-9238-5
8 sg:pub.10.1038/35089130
9 sg:pub.10.1038/432822a
10 sg:pub.10.1038/nature18619
11 sg:pub.10.1038/ncomms1449
12 sg:pub.10.1038/nphoton.2008.29
13 sg:pub.10.1038/nphoton.2009.131
14 sg:pub.10.1038/s41566-017-0004-4
15 sg:pub.10.1038/srep16199
16 schema:datePublished 2017-10-03
17 schema:datePublishedReg 2017-10-03
18 schema:description An important challenge in the field of three-dimensional ultrafast laser processing is to achieve permanent modifications in the bulk of silicon and narrow-gap materials. Recent attempts by increasing the energy of infrared ultrashort pulses have simply failed. Here, we establish that it is because focusing with a maximum numerical aperture of about 1.5 with conventional schemes does not allow overcoming strong nonlinear and plasma effects in the pre-focal region. We circumvent this limitation by exploiting solid-immersion focusing, in analogy to techniques applied in advanced microscopy and lithography. By creating the conditions for an interaction with an extreme numerical aperture near 3 in a perfect spherical sample, repeatable femtosecond optical breakdown and controllable refractive index modifications are achieved inside silicon. This opens the door to the direct writing of three-dimensional monolithic devices for silicon photonics. It also provides perspectives for new strong-field physics and warm-dense-matter plasma experiments.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf N25ec7dd2026d4ffd99915bc2f8bcbea5
22 N92b3df9c4c12423ab2ef15f40e0f61d8
23 sg:journal.1043282
24 schema:keywords advanced microscopy
25 analogy
26 aperture
27 attempt
28 breakdown
29 bulk
30 bulk of silicon
31 bulk silicon
32 challenges
33 conditions
34 conventional schemes
35 devices
36 direct writing
37 door
38 effect
39 energy
40 experiments
41 femtosecond optical breakdown
42 field
43 focusing
44 important challenge
45 index modification
46 infrared ultrashort pulses
47 interaction
48 laser
49 laser processing
50 limitations
51 lithography
52 materials
53 maximum numerical aperture
54 microscopy
55 modification
56 monolithic device
57 narrow-gap materials
58 numerical aperture
59 optical breakdown
60 permanent modification
61 perspective
62 photonics
63 physics
64 plasma experiments
65 pre-focal region
66 processing
67 pulses
68 recent attempts
69 refractive index modification
70 region
71 samples
72 scheme
73 silicon
74 silicon photonics
75 spherical samples
76 strong-field physics
77 technique
78 threshold
79 ultrafast laser
80 ultrafast laser processing
81 ultrashort pulses
82 writing
83 schema:name Crossing the threshold of ultrafast laser writing in bulk silicon
84 schema:pagination 773
85 schema:productId Nc9448ff85cad429d9c16fcd5b5374efc
86 Nd993aa837fe14a4a8394cc77405ecaf6
87 Nde13763a95e642f59508752de14ab1f6
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092015762
89 https://doi.org/10.1038/s41467-017-00907-8
90 schema:sdDatePublished 2022-10-01T06:43
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N0a4d3c9392914c50b06b55e538c1e921
93 schema:url https://doi.org/10.1038/s41467-017-00907-8
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0a4d3c9392914c50b06b55e538c1e921 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N1a87f10aa9754b3ca2ca038eb77d7225 rdf:first sg:person.01103632507.72
100 rdf:rest rdf:nil
101 N1b8fe848ee1a4938856144957f29675f rdf:first sg:person.01310143611.99
102 rdf:rest N65c2a743d2ad45b5ac8ca0bf1ffc84f4
103 N25ec7dd2026d4ffd99915bc2f8bcbea5 schema:volumeNumber 8
104 rdf:type schema:PublicationVolume
105 N396ed9de405a4ea3bc4637eba153acf3 rdf:first sg:person.0710221636.70
106 rdf:rest N981d6d178df24e63864a3df45f914489
107 N65c2a743d2ad45b5ac8ca0bf1ffc84f4 rdf:first sg:person.016565601521.67
108 rdf:rest N396ed9de405a4ea3bc4637eba153acf3
109 N92b3df9c4c12423ab2ef15f40e0f61d8 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 N981d6d178df24e63864a3df45f914489 rdf:first sg:person.0677652270.80
112 rdf:rest Nf4c99c27dbab41d680b852d616d37544
113 Nc9448ff85cad429d9c16fcd5b5374efc schema:name doi
114 schema:value 10.1038/s41467-017-00907-8
115 rdf:type schema:PropertyValue
116 Nd993aa837fe14a4a8394cc77405ecaf6 schema:name pubmed_id
117 schema:value 28974678
118 rdf:type schema:PropertyValue
119 Nde13763a95e642f59508752de14ab1f6 schema:name dimensions_id
120 schema:value pub.1092015762
121 rdf:type schema:PropertyValue
122 Nf4c99c27dbab41d680b852d616d37544 rdf:first sg:person.01323677153.06
123 rdf:rest N1a87f10aa9754b3ca2ca038eb77d7225
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
128 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
131 schema:name Optical Physics
132 rdf:type schema:DefinedTerm
133 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
134 schema:name Technology
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
137 schema:name Nanotechnology
138 rdf:type schema:DefinedTerm
139 sg:grant.5302782 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-00907-8
140 rdf:type schema:MonetaryGrant
141 sg:grant.6622265 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-00907-8
142 rdf:type schema:MonetaryGrant
143 sg:journal.1043282 schema:issn 2041-1723
144 schema:name Nature Communications
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.01103632507.72 schema:affiliation grid-institutes:grid.5399.6
148 schema:familyName Grojo
149 schema:givenName David
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103632507.72
151 rdf:type schema:Person
152 sg:person.01310143611.99 schema:affiliation grid-institutes:grid.5399.6
153 schema:familyName Chanal
154 schema:givenName Margaux
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310143611.99
156 rdf:type schema:Person
157 sg:person.01323677153.06 schema:affiliation grid-institutes:grid.8127.c
158 schema:familyName Tzortzakis
159 schema:givenName Stelios
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01323677153.06
161 rdf:type schema:Person
162 sg:person.016565601521.67 schema:affiliation grid-institutes:grid.425806.d
163 schema:familyName Fedorov
164 schema:givenName Vladimir Yu.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016565601521.67
166 rdf:type schema:Person
167 sg:person.0677652270.80 schema:affiliation grid-institutes:grid.5399.6
168 schema:familyName Clady
169 schema:givenName Raphaël
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677652270.80
171 rdf:type schema:Person
172 sg:person.0710221636.70 schema:affiliation grid-institutes:grid.5399.6
173 schema:familyName Chambonneau
174 schema:givenName Maxime
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710221636.70
176 rdf:type schema:Person
177 sg:pub.10.1007/s00339-015-9238-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001581377
178 https://doi.org/10.1007/s00339-015-9238-5
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/35089130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041938448
181 https://doi.org/10.1038/35089130
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/432822a schema:sameAs https://app.dimensions.ai/details/publication/pub.1045181591
184 https://doi.org/10.1038/432822a
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature18619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039975644
187 https://doi.org/10.1038/nature18619
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ncomms1449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042748029
190 https://doi.org/10.1038/ncomms1449
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nphoton.2008.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021629982
193 https://doi.org/10.1038/nphoton.2008.29
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nphoton.2009.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052376122
196 https://doi.org/10.1038/nphoton.2009.131
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/s41566-017-0004-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091849443
199 https://doi.org/10.1038/s41566-017-0004-4
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/srep16199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012070854
202 https://doi.org/10.1038/srep16199
203 rdf:type schema:CreativeWork
204 grid-institutes:grid.425806.d schema:alternateName P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, 119991, Moscow, Russia
205 schema:name P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, 119991, Moscow, Russia
206 Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
207 rdf:type schema:Organization
208 grid-institutes:grid.5399.6 schema:alternateName Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France
209 schema:name Aix-Marseille University, CNRS, LP3 UMR 7341, 13009, Marseille, France
210 rdf:type schema:Organization
211 grid-institutes:grid.8127.c schema:alternateName Materials Science and Technology Department, University of Crete, 71003, Heraklion, Greece
212 schema:name Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology—Hellas (FORTH), P.O. Box 1527, GR-71110, Heraklion, Greece
213 Materials Science and Technology Department, University of Crete, 71003, Heraklion, Greece
214 Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...