Planar polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila epithelium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-09-07

AUTHORS

Cayla E. Jewett, Timothy E. Vanderleest, Hui Miao, Yi Xie, Roopa Madhu, Dinah Loerke, J. Todd Blankenship

ABSTRACT

The coordination between membrane trafficking and actomyosin networks is essential to the regulation of cell and tissue shape. Here, we examine Rab protein distributions during Drosophila epithelial tissue remodeling and show that Rab35 is dynamically planar polarized. Rab35 compartments are enriched at contractile interfaces of intercalating cells and provide the first evidence of interfacial monopolarity. When Rab35 function is disrupted, apical area oscillations still occur and contractile steps are observed. However, contractions are followed by reversals and interfaces fail to shorten, demonstrating that Rab35 functions as a ratchet ensuring unidirectional movement. Although actomyosin forces have been thought to drive interface contraction, initiation of Rab35 compartments does not require Myosin II function. However, Rab35 compartments do not terminate and continue to grow into large elongated structures following actomyosin disruption. Finally, Rab35 represents a common contractile cell-shaping mechanism, as mesoderm invagination fails in Rab35 compromised embryos and Rab35 localizes to constricting surfaces. More... »

PAGES

476

References to SciGraph publications

  • 2008-11-23. Pulsed contractions of an actin–myosin network drive apical constriction in NATURE
  • 2011-06-26. Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis in NATURE CELL BIOLOGY
  • 2008-11-02. Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis in NATURE CELL BIOLOGY
  • 2017-02-23. Oxidation of F-actin controls the terminal steps of cytokinesis in NATURE COMMUNICATIONS
  • 2015-07-27. A self-organized biomechanical network drives shape changes during tissue morphogenesis in NATURE
  • 2005-08-14. Regulation of polarized extension and planar cell polarity in the cochlea by the vertebrate PCP pathway in NATURE GENETICS
  • 2008-07-20. Robust single-particle tracking in live-cell time-lapse sequences in NATURE METHODS
  • 2010-11-10. Planar polarized actomyosin contractile flows control epithelial junction remodelling in NATURE
  • 2012-11-11. Vertebrate kidney tubules elongate using a planar cell polarity–dependent, rosette-based mechanism of convergent extension in NATURE GENETICS
  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2013-07-07. Apical domain polarization localizes actin–myosin activity to drive ratchet-like apical constriction in NATURE CELL BIOLOGY
  • 2011-04-24. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis in NATURE CELL BIOLOGY
  • 2012-03-11. Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth in NATURE CELL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41467-017-00553-0

    DOI

    http://dx.doi.org/10.1038/s41467-017-00553-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091465435

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28883443


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Actomyosin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals, Genetically Modified", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Compartmentation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Membrane", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Polarity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Shape", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila melanogaster", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endosomes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epithelial Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Myosin Type II", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "rab GTP-Binding Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "rab5 GTP-Binding Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jewett", 
            "givenName": "Cayla E.", 
            "id": "sg:person.01325560363.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325560363.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Denver, 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Physics, University of Denver, 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanderleest", 
            "givenName": "Timothy E.", 
            "id": "sg:person.01257445163.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257445163.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miao", 
            "givenName": "Hui", 
            "id": "sg:person.01341221323.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341221323.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xie", 
            "givenName": "Yi", 
            "id": "sg:person.01321756676.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321756676.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Denver, 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Physics, University of Denver, 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Madhu", 
            "givenName": "Roopa", 
            "id": "sg:person.010254042777.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254042777.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, University of Denver, 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Physics, University of Denver, 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loerke", 
            "givenName": "Dinah", 
            "id": "sg:person.01255445236.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255445236.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.266239.a", 
              "name": [
                "Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blankenship", 
            "givenName": "J. Todd", 
            "id": "sg:person.01240645011.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240645011.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncb2224", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002431551", 
              "https://doi.org/10.1038/ncb2224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1622", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022081541", 
              "https://doi.org/10.1038/ng1622"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083860049", 
              "https://doi.org/10.1038/ncomms14528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014167362", 
              "https://doi.org/10.1038/nmeth.1237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026028927", 
              "https://doi.org/10.1038/nature02590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2454", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025763456", 
              "https://doi.org/10.1038/ncb2454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033494938", 
              "https://doi.org/10.1038/ncb2796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009091081", 
              "https://doi.org/10.1038/ng.2452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2279", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046208104", 
              "https://doi.org/10.1038/ncb2279"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041672041", 
              "https://doi.org/10.1038/nature14603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008738516", 
              "https://doi.org/10.1038/nature07522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb1798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019439618", 
              "https://doi.org/10.1038/ncb1798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016876949", 
              "https://doi.org/10.1038/nature09566"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-07", 
        "datePublishedReg": "2017-09-07", 
        "description": "The coordination between membrane trafficking and actomyosin networks is essential to the regulation of cell and tissue shape. Here, we examine Rab protein distributions during Drosophila epithelial tissue remodeling and show that Rab35 is dynamically planar polarized. Rab35 compartments are enriched at contractile interfaces of intercalating cells and provide the first evidence of interfacial monopolarity. When Rab35 function is disrupted, apical area oscillations still occur and contractile steps are observed. However, contractions are followed by reversals and interfaces fail to shorten, demonstrating that Rab35 functions as a ratchet ensuring unidirectional movement. Although actomyosin forces have been thought to drive interface contraction, initiation of Rab35 compartments does not require Myosin II function. However, Rab35 compartments do not terminate and continue to grow into large elongated structures following actomyosin disruption. Finally, Rab35 represents a common contractile cell-shaping mechanism, as mesoderm invagination fails in Rab35 compromised embryos and Rab35 localizes to constricting surfaces.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41467-017-00553-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4729683", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2520679", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7026356", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1043282", 
            "issn": [
              "2041-1723"
            ], 
            "name": "Nature Communications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "Rab35 function", 
          "Drosophila epithelial tissues", 
          "myosin II function", 
          "regulation of cell", 
          "mesoderm invagination", 
          "Drosophila epithelia", 
          "cell intercalation", 
          "membrane trafficking", 
          "actomyosin network", 
          "actomyosin forces", 
          "Rab35", 
          "protein distribution", 
          "tissue shape", 
          "epithelial tissues", 
          "unidirectional movement", 
          "first evidence", 
          "compartments", 
          "cells", 
          "trafficking", 
          "embryos", 
          "interface contraction", 
          "invagination", 
          "ratchet", 
          "regulation", 
          "function", 
          "disruption", 
          "monopolarity", 
          "tissue", 
          "epithelium", 
          "mechanism", 
          "initiation", 
          "evidence", 
          "structure", 
          "step", 
          "distribution", 
          "contraction", 
          "movement", 
          "reversal", 
          "coordination", 
          "shape", 
          "network", 
          "interface", 
          "surface", 
          "intercalation", 
          "force", 
          "oscillations", 
          "area oscillations", 
          "planar"
        ], 
        "name": "Planar polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila epithelium", 
        "pagination": "476", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091465435"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41467-017-00553-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28883443"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41467-017-00553-0", 
          "https://app.dimensions.ai/details/publication/pub.1091465435"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_730.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41467-017-00553-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00553-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00553-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00553-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00553-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    267 TRIPLES      22 PREDICATES      101 URIs      80 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41467-017-00553-0 schema:about N00a38015fa5246c5a4f473f2c136dcd3
    2 N0666fd980d1b4825850aa12e2eacb0c6
    3 N07584a7b38bf4760bc2225602c5ac0e9
    4 N200539983e3b4685a878690ce3a94e7d
    5 N23e6a09bf41a46c3b212f079ca8f3e93
    6 N5ff61d4a5a72415680f527e01085786b
    7 N622146cd305049d4977af9a7efb812ad
    8 N87fa2da63eaf490fa1d5bba0d33a63cd
    9 N9161129006044a3bb563f9a083f06c5d
    10 Na0d927f35e504484bb167929129ef66b
    11 Nb64d362b3b9b432e8ddeaf4c225a8c43
    12 Nba5957f138424abaa489207f3af6d5aa
    13 Nc1a0eecd84ce41228c40d29a38998004
    14 Ne6b920dfe1c04597bc86fcb80b8b7890
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 schema:author N2b82053cddd947cf86dc4eef1caa0633
    18 schema:citation sg:pub.10.1038/nature02590
    19 sg:pub.10.1038/nature07522
    20 sg:pub.10.1038/nature09566
    21 sg:pub.10.1038/nature14603
    22 sg:pub.10.1038/ncb1798
    23 sg:pub.10.1038/ncb2224
    24 sg:pub.10.1038/ncb2279
    25 sg:pub.10.1038/ncb2454
    26 sg:pub.10.1038/ncb2796
    27 sg:pub.10.1038/ncomms14528
    28 sg:pub.10.1038/ng.2452
    29 sg:pub.10.1038/ng1622
    30 sg:pub.10.1038/nmeth.1237
    31 schema:datePublished 2017-09-07
    32 schema:datePublishedReg 2017-09-07
    33 schema:description The coordination between membrane trafficking and actomyosin networks is essential to the regulation of cell and tissue shape. Here, we examine Rab protein distributions during Drosophila epithelial tissue remodeling and show that Rab35 is dynamically planar polarized. Rab35 compartments are enriched at contractile interfaces of intercalating cells and provide the first evidence of interfacial monopolarity. When Rab35 function is disrupted, apical area oscillations still occur and contractile steps are observed. However, contractions are followed by reversals and interfaces fail to shorten, demonstrating that Rab35 functions as a ratchet ensuring unidirectional movement. Although actomyosin forces have been thought to drive interface contraction, initiation of Rab35 compartments does not require Myosin II function. However, Rab35 compartments do not terminate and continue to grow into large elongated structures following actomyosin disruption. Finally, Rab35 represents a common contractile cell-shaping mechanism, as mesoderm invagination fails in Rab35 compromised embryos and Rab35 localizes to constricting surfaces.
    34 schema:genre article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N93452eae3a894fc3bc109ade4cbe2c7c
    38 Ne620f0f0b29c48558c329b70de0b8580
    39 sg:journal.1043282
    40 schema:keywords Drosophila epithelia
    41 Drosophila epithelial tissues
    42 Rab35
    43 Rab35 function
    44 actomyosin forces
    45 actomyosin network
    46 area oscillations
    47 cell intercalation
    48 cells
    49 compartments
    50 contraction
    51 coordination
    52 disruption
    53 distribution
    54 embryos
    55 epithelial tissues
    56 epithelium
    57 evidence
    58 first evidence
    59 force
    60 function
    61 initiation
    62 intercalation
    63 interface
    64 interface contraction
    65 invagination
    66 mechanism
    67 membrane trafficking
    68 mesoderm invagination
    69 monopolarity
    70 movement
    71 myosin II function
    72 network
    73 oscillations
    74 planar
    75 protein distribution
    76 ratchet
    77 regulation
    78 regulation of cell
    79 reversal
    80 shape
    81 step
    82 structure
    83 surface
    84 tissue
    85 tissue shape
    86 trafficking
    87 unidirectional movement
    88 schema:name Planar polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila epithelium
    89 schema:pagination 476
    90 schema:productId Ncd732c39e4a045c98d430a554e13bebf
    91 Nd12e20aa89424b909f6d775b27ef6002
    92 Nfbb1e7378f7e45b0bdffe2e2ce9f7c5b
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091465435
    94 https://doi.org/10.1038/s41467-017-00553-0
    95 schema:sdDatePublished 2022-05-20T07:33
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N2324f2ff47d848a0b99b558adeecdc3d
    98 schema:url https://doi.org/10.1038/s41467-017-00553-0
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N00a38015fa5246c5a4f473f2c136dcd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    103 schema:name Drosophila Proteins
    104 rdf:type schema:DefinedTerm
    105 N0666fd980d1b4825850aa12e2eacb0c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Drosophila melanogaster
    107 rdf:type schema:DefinedTerm
    108 N07584a7b38bf4760bc2225602c5ac0e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Animals
    110 rdf:type schema:DefinedTerm
    111 N1a706e419bee4c108c136f5bdf881545 rdf:first sg:person.01321756676.01
    112 rdf:rest Nf78497bedfc143558c30b1c95d8e6d46
    113 N200539983e3b4685a878690ce3a94e7d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name rab5 GTP-Binding Proteins
    115 rdf:type schema:DefinedTerm
    116 N2324f2ff47d848a0b99b558adeecdc3d schema:name Springer Nature - SN SciGraph project
    117 rdf:type schema:Organization
    118 N23e6a09bf41a46c3b212f079ca8f3e93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Cell Shape
    120 rdf:type schema:DefinedTerm
    121 N2b82053cddd947cf86dc4eef1caa0633 rdf:first sg:person.01325560363.24
    122 rdf:rest Ne771b9c493ce49ffb08d182fe8779af0
    123 N5f568b86efeb4cbba9b2d73cc617f28f rdf:first sg:person.01240645011.37
    124 rdf:rest rdf:nil
    125 N5ff61d4a5a72415680f527e01085786b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Animals, Genetically Modified
    127 rdf:type schema:DefinedTerm
    128 N622146cd305049d4977af9a7efb812ad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Cell Polarity
    130 rdf:type schema:DefinedTerm
    131 N87fa2da63eaf490fa1d5bba0d33a63cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Epithelial Cells
    133 rdf:type schema:DefinedTerm
    134 N9161129006044a3bb563f9a083f06c5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Myosin Type II
    136 rdf:type schema:DefinedTerm
    137 N930e79d1f57c4fc88a3ddc661825e917 rdf:first sg:person.01341221323.52
    138 rdf:rest N1a706e419bee4c108c136f5bdf881545
    139 N93452eae3a894fc3bc109ade4cbe2c7c schema:issueNumber 1
    140 rdf:type schema:PublicationIssue
    141 Na0d927f35e504484bb167929129ef66b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name rab GTP-Binding Proteins
    143 rdf:type schema:DefinedTerm
    144 Nb64d362b3b9b432e8ddeaf4c225a8c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Cell Membrane
    146 rdf:type schema:DefinedTerm
    147 Nba5957f138424abaa489207f3af6d5aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Actomyosin
    149 rdf:type schema:DefinedTerm
    150 Nbae776bb335d48f9877987854701f7da rdf:first sg:person.01255445236.88
    151 rdf:rest N5f568b86efeb4cbba9b2d73cc617f28f
    152 Nc1a0eecd84ce41228c40d29a38998004 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Endosomes
    154 rdf:type schema:DefinedTerm
    155 Ncd732c39e4a045c98d430a554e13bebf schema:name pubmed_id
    156 schema:value 28883443
    157 rdf:type schema:PropertyValue
    158 Nd12e20aa89424b909f6d775b27ef6002 schema:name doi
    159 schema:value 10.1038/s41467-017-00553-0
    160 rdf:type schema:PropertyValue
    161 Ne620f0f0b29c48558c329b70de0b8580 schema:volumeNumber 8
    162 rdf:type schema:PublicationVolume
    163 Ne6b920dfe1c04597bc86fcb80b8b7890 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Cell Compartmentation
    165 rdf:type schema:DefinedTerm
    166 Ne771b9c493ce49ffb08d182fe8779af0 rdf:first sg:person.01257445163.89
    167 rdf:rest N930e79d1f57c4fc88a3ddc661825e917
    168 Nf78497bedfc143558c30b1c95d8e6d46 rdf:first sg:person.010254042777.61
    169 rdf:rest Nbae776bb335d48f9877987854701f7da
    170 Nfbb1e7378f7e45b0bdffe2e2ce9f7c5b schema:name dimensions_id
    171 schema:value pub.1091465435
    172 rdf:type schema:PropertyValue
    173 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    174 schema:name Biological Sciences
    175 rdf:type schema:DefinedTerm
    176 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    177 schema:name Biochemistry and Cell Biology
    178 rdf:type schema:DefinedTerm
    179 sg:grant.2520679 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-00553-0
    180 rdf:type schema:MonetaryGrant
    181 sg:grant.4729683 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-00553-0
    182 rdf:type schema:MonetaryGrant
    183 sg:grant.7026356 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-00553-0
    184 rdf:type schema:MonetaryGrant
    185 sg:journal.1043282 schema:issn 2041-1723
    186 schema:name Nature Communications
    187 schema:publisher Springer Nature
    188 rdf:type schema:Periodical
    189 sg:person.010254042777.61 schema:affiliation grid-institutes:grid.266239.a
    190 schema:familyName Madhu
    191 schema:givenName Roopa
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010254042777.61
    193 rdf:type schema:Person
    194 sg:person.01240645011.37 schema:affiliation grid-institutes:grid.266239.a
    195 schema:familyName Blankenship
    196 schema:givenName J. Todd
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240645011.37
    198 rdf:type schema:Person
    199 sg:person.01255445236.88 schema:affiliation grid-institutes:grid.266239.a
    200 schema:familyName Loerke
    201 schema:givenName Dinah
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255445236.88
    203 rdf:type schema:Person
    204 sg:person.01257445163.89 schema:affiliation grid-institutes:grid.266239.a
    205 schema:familyName Vanderleest
    206 schema:givenName Timothy E.
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257445163.89
    208 rdf:type schema:Person
    209 sg:person.01321756676.01 schema:affiliation grid-institutes:grid.266239.a
    210 schema:familyName Xie
    211 schema:givenName Yi
    212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321756676.01
    213 rdf:type schema:Person
    214 sg:person.01325560363.24 schema:affiliation grid-institutes:grid.266239.a
    215 schema:familyName Jewett
    216 schema:givenName Cayla E.
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325560363.24
    218 rdf:type schema:Person
    219 sg:person.01341221323.52 schema:affiliation grid-institutes:grid.266239.a
    220 schema:familyName Miao
    221 schema:givenName Hui
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341221323.52
    223 rdf:type schema:Person
    224 sg:pub.10.1038/nature02590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026028927
    225 https://doi.org/10.1038/nature02590
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature07522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008738516
    228 https://doi.org/10.1038/nature07522
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature09566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016876949
    231 https://doi.org/10.1038/nature09566
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature14603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041672041
    234 https://doi.org/10.1038/nature14603
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/ncb1798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019439618
    237 https://doi.org/10.1038/ncb1798
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ncb2224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002431551
    240 https://doi.org/10.1038/ncb2224
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/ncb2279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046208104
    243 https://doi.org/10.1038/ncb2279
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/ncb2454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025763456
    246 https://doi.org/10.1038/ncb2454
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/ncb2796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033494938
    249 https://doi.org/10.1038/ncb2796
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/ncomms14528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083860049
    252 https://doi.org/10.1038/ncomms14528
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/ng.2452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009091081
    255 https://doi.org/10.1038/ng.2452
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/ng1622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022081541
    258 https://doi.org/10.1038/ng1622
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nmeth.1237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014167362
    261 https://doi.org/10.1038/nmeth.1237
    262 rdf:type schema:CreativeWork
    263 grid-institutes:grid.266239.a schema:alternateName Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA
    264 Department of Physics, University of Denver, 80208, Denver, CO, USA
    265 schema:name Department of Biological Sciences, University of Denver, 80208, Denver, CO, USA
    266 Department of Physics, University of Denver, 80208, Denver, CO, USA
    267 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...