Environmentally stable interface of layered oxide cathodes for sodium-ion batteries View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-26

AUTHORS

Shaohua Guo, Qi Li, Pan Liu, Mingwei Chen, Haoshen Zhou

ABSTRACT

Sodium-ion batteries are strategically pivotal to achieving large-scale energy storage. Layered oxides, especially manganese-based oxides, are the most popular cathodes due to their high reversible capacity and use of earth-abundant elements. However, less noticed is the fact that the interface of layered cathodes always suffers from atmospheric and electrochemical corrosion, leading to severely diminished electrochemical properties. Herein, we demonstrate an environmentally stable interface via the superficial concentration of titanium, which not only overcomes the above limitations, but also presents unique surface chemical/electrochemical properties. The results show that the atomic-scale interface is composed of spinel-like titanium (III) oxides, enhancing the structural/electrochemical stability and electronic/ionic conductivity. Consequently, the interface-engineered electrode shows excellent cycling performance among all layered manganese-based cathodes, as well as high-energy density. Our findings highlight the significance of a stable interface and, moreover, open opportunities for the design of well-tailored cathode materials for sodium storage. More... »

PAGES

135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-017-00157-8

DOI

http://dx.doi.org/10.1038/s41467-017-00157-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090807667

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28743876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
            "Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Shaohua", 
        "id": "sg:person.01062745606.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062745606.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Qi", 
        "id": "sg:person.010721323365.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010721323365.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China", 
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Pan", 
        "id": "sg:person.0700644400.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China", 
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China", 
            "Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Haoshen", 
        "id": "sg:person.01177127377.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177127377.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001817047", 
          "https://doi.org/10.1038/nmat3309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027373092", 
          "https://doi.org/10.1038/ncomms5358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms6693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002756814", 
          "https://doi.org/10.1038/ncomms6693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046658522", 
          "https://doi.org/10.1038/nmat2920"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-26", 
    "datePublishedReg": "2017-07-26", 
    "description": "Sodium-ion batteries are strategically pivotal to achieving large-scale energy storage. Layered oxides, especially manganese-based oxides, are the most popular cathodes due to their high reversible capacity and use of earth-abundant elements. However, less noticed is the fact that the interface of layered cathodes always suffers from atmospheric and electrochemical corrosion, leading to severely diminished electrochemical properties. Herein, we demonstrate an environmentally stable interface via the superficial concentration of titanium, which not only overcomes the above limitations, but also presents unique surface chemical/electrochemical properties. The results show that the atomic-scale interface is composed of spinel-like titanium (III) oxides, enhancing the structural/electrochemical stability and electronic/ionic conductivity. Consequently, the interface-engineered electrode shows excellent cycling performance among all layered manganese-based cathodes, as well as high-energy density. Our findings highlight the significance of a stable interface and, moreover, open opportunities for the design of well-tailored cathode materials for sodium storage.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41467-017-00157-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8155228", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "sodium-ion batteries", 
      "electrochemical properties", 
      "stable interface", 
      "large-scale energy storage", 
      "manganese-based oxides", 
      "manganese-based cathodes", 
      "Layered Oxide Cathodes", 
      "high reversible capacity", 
      "earth-abundant elements", 
      "high energy density", 
      "atomic-scale interfaces", 
      "electrochemical stability", 
      "cathode materials", 
      "popular cathode", 
      "Layered Cathodes", 
      "reversible capacity", 
      "oxide cathodes", 
      "ionic conductivity", 
      "sodium storage", 
      "cathode", 
      "energy storage", 
      "titanium oxide", 
      "electrochemical corrosion", 
      "superficial concentration", 
      "batteries", 
      "oxide", 
      "electrode", 
      "properties", 
      "interface", 
      "Herein", 
      "above limitations", 
      "open opportunities", 
      "layered", 
      "storage", 
      "conductivity", 
      "corrosion", 
      "stability", 
      "titanium", 
      "materials", 
      "concentration", 
      "performance", 
      "design", 
      "density", 
      "capacity", 
      "limitations", 
      "elements", 
      "results", 
      "opportunities", 
      "use", 
      "fact", 
      "significance", 
      "findings"
    ], 
    "name": "Environmentally stable interface of layered oxide cathodes for sodium-ion batteries", 
    "pagination": "135", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090807667"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-017-00157-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28743876"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-017-00157-8", 
      "https://app.dimensions.ai/details/publication/pub.1090807667"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_738.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41467-017-00157-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00157-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00157-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00157-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00157-8'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      83 URIs      69 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-017-00157-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author Nd7af321f158346718eb83f4a852154df
6 schema:citation sg:pub.10.1038/ncomms5358
7 sg:pub.10.1038/ncomms6693
8 sg:pub.10.1038/nmat2920
9 sg:pub.10.1038/nmat3309
10 schema:datePublished 2017-07-26
11 schema:datePublishedReg 2017-07-26
12 schema:description Sodium-ion batteries are strategically pivotal to achieving large-scale energy storage. Layered oxides, especially manganese-based oxides, are the most popular cathodes due to their high reversible capacity and use of earth-abundant elements. However, less noticed is the fact that the interface of layered cathodes always suffers from atmospheric and electrochemical corrosion, leading to severely diminished electrochemical properties. Herein, we demonstrate an environmentally stable interface via the superficial concentration of titanium, which not only overcomes the above limitations, but also presents unique surface chemical/electrochemical properties. The results show that the atomic-scale interface is composed of spinel-like titanium (III) oxides, enhancing the structural/electrochemical stability and electronic/ionic conductivity. Consequently, the interface-engineered electrode shows excellent cycling performance among all layered manganese-based cathodes, as well as high-energy density. Our findings highlight the significance of a stable interface and, moreover, open opportunities for the design of well-tailored cathode materials for sodium storage.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N4de94e26a142407c8c002bca8e77a40d
16 Nba6f0026dbec4a0a858dc4a71ad67978
17 sg:journal.1043282
18 schema:keywords Herein
19 Layered Cathodes
20 Layered Oxide Cathodes
21 above limitations
22 atomic-scale interfaces
23 batteries
24 capacity
25 cathode
26 cathode materials
27 concentration
28 conductivity
29 corrosion
30 density
31 design
32 earth-abundant elements
33 electrochemical corrosion
34 electrochemical properties
35 electrochemical stability
36 electrode
37 elements
38 energy storage
39 fact
40 findings
41 high energy density
42 high reversible capacity
43 interface
44 ionic conductivity
45 large-scale energy storage
46 layered
47 limitations
48 manganese-based cathodes
49 manganese-based oxides
50 materials
51 open opportunities
52 opportunities
53 oxide
54 oxide cathodes
55 performance
56 popular cathode
57 properties
58 results
59 reversible capacity
60 significance
61 sodium storage
62 sodium-ion batteries
63 stability
64 stable interface
65 storage
66 superficial concentration
67 titanium
68 titanium oxide
69 use
70 schema:name Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
71 schema:pagination 135
72 schema:productId N408ad3b6b20740058e1b53eae9e0ec39
73 N884fd1b9f6c74d4a81cd9c422e5c04d4
74 N9e0fa7ce90ea47ad91004e9f740e82e0
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090807667
76 https://doi.org/10.1038/s41467-017-00157-8
77 schema:sdDatePublished 2022-11-24T21:02
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N5aedde3db9f249da919d37a2bce7b9f9
80 schema:url https://doi.org/10.1038/s41467-017-00157-8
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N204ad26ce4c146dd9ccbc74eea06a347 rdf:first sg:person.010721323365.20
85 rdf:rest N2fd4d1850e0c494781d3fedbe34288f4
86 N2fd4d1850e0c494781d3fedbe34288f4 rdf:first sg:person.0700644400.67
87 rdf:rest N7c46da71584f4e09bca9841556374e41
88 N408ad3b6b20740058e1b53eae9e0ec39 schema:name dimensions_id
89 schema:value pub.1090807667
90 rdf:type schema:PropertyValue
91 N4de94e26a142407c8c002bca8e77a40d schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N5aedde3db9f249da919d37a2bce7b9f9 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N736f46c13d7a431e97df39ac8eac0e52 rdf:first sg:person.01177127377.42
96 rdf:rest rdf:nil
97 N7c46da71584f4e09bca9841556374e41 rdf:first sg:person.01111213505.34
98 rdf:rest N736f46c13d7a431e97df39ac8eac0e52
99 N884fd1b9f6c74d4a81cd9c422e5c04d4 schema:name pubmed_id
100 schema:value 28743876
101 rdf:type schema:PropertyValue
102 N9e0fa7ce90ea47ad91004e9f740e82e0 schema:name doi
103 schema:value 10.1038/s41467-017-00157-8
104 rdf:type schema:PropertyValue
105 Nba6f0026dbec4a0a858dc4a71ad67978 schema:volumeNumber 8
106 rdf:type schema:PublicationVolume
107 Nd7af321f158346718eb83f4a852154df rdf:first sg:person.01062745606.55
108 rdf:rest N204ad26ce4c146dd9ccbc74eea06a347
109 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
110 schema:name Chemical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Chemistry (incl. Structural)
114 rdf:type schema:DefinedTerm
115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
116 schema:name Engineering
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
119 schema:name Materials Engineering
120 rdf:type schema:DefinedTerm
121 sg:grant.8155228 http://pending.schema.org/fundedItem sg:pub.10.1038/s41467-017-00157-8
122 rdf:type schema:MonetaryGrant
123 sg:journal.1043282 schema:issn 2041-1723
124 schema:name Nature Communications
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.01062745606.55 schema:affiliation grid-institutes:grid.208504.b
128 schema:familyName Guo
129 schema:givenName Shaohua
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062745606.55
131 rdf:type schema:Person
132 sg:person.010721323365.20 schema:affiliation grid-institutes:grid.208504.b
133 schema:familyName Li
134 schema:givenName Qi
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010721323365.20
136 rdf:type schema:Person
137 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.69566.3a
138 schema:familyName Chen
139 schema:givenName Mingwei
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
141 rdf:type schema:Person
142 sg:person.01177127377.42 schema:affiliation grid-institutes:grid.208504.b
143 schema:familyName Zhou
144 schema:givenName Haoshen
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177127377.42
146 rdf:type schema:Person
147 sg:person.0700644400.67 schema:affiliation grid-institutes:grid.69566.3a
148 schema:familyName Liu
149 schema:givenName Pan
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700644400.67
151 rdf:type schema:Person
152 sg:pub.10.1038/ncomms5358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027373092
153 https://doi.org/10.1038/ncomms5358
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ncomms6693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002756814
156 https://doi.org/10.1038/ncomms6693
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nmat2920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046658522
159 https://doi.org/10.1038/nmat2920
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nmat3309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001817047
162 https://doi.org/10.1038/nmat3309
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.208504.b schema:alternateName Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan
165 schema:name Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
166 Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8568, Tsukuba, Japan
167 rdf:type schema:Organization
168 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
169 schema:name State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
170 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...