Characterizing rare fluctuations in soft particulate flows View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-12

AUTHORS

S.H.E. Rahbari, A.A. Saberi, Hyunggyu Park, J. Vollmer

ABSTRACT

Soft particulate media include a wide range of systems involving athermal dissipative particles both in non-living and biological materials. Characterization of flows of particulate media is of great practical and theoretical importance. A fascinating feature of these systems is the existence of a critical rigidity transition in the dense regime dominated by highly intermittent fluctuations that severely affects the flow properties. Here, we unveil the underlying mechanisms of rare fluctuations in soft particulate flows. We find that rare fluctuations have different origins above and below the critical jamming density and become suppressed near the jamming transition. We then conjecture a time-independent local fluctuation relation, which we verify numerically, and that gives rise to an effective temperature. We discuss similarities and differences between our proposed effective temperature with the conventional kinetic temperature in the system by means of a universal scaling collapse.Soft particulate flows such as granular media are prone to fluctuations like jamming and avalanches. Here Rahbari et al. consider the statistics of rare fluctuations to identify an effective temperature which, unlike previous ones, is valid for packing fractions both near and far from the jamming point. More... »

PAGES

11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41467-017-00022-8

DOI

http://dx.doi.org/10.1038/s41467-017-00022-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084537785

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28396590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.249961.1", 
          "name": [
            "School of Physics, Korea Institute for Advanced Study, 130-722, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rahbari", 
        "givenName": "S.H.E.", 
        "id": "sg:person.01322026715.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322026715.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cologne", 
          "id": "https://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Department of Physics, College of Science, University of Tehran, 14395-547, Tehran, Iran", 
            "School of Physics and Accelerators, Institute for research in Fundamental Science (IPM), 19395-5531, Tehran, Iran", 
            "Institut f\u00fcr Theoretische Physik, Universitat zu K\u00f6ln, Z\u00fclpicher Strasse 77, 50937, K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saberi", 
        "givenName": "A.A.", 
        "id": "sg:person.0636374542.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636374542.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute for Advanced Study", 
          "id": "https://www.grid.ac/institutes/grid.249961.1", 
          "name": [
            "School of Physics, Korea Institute for Advanced Study, 130-722, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Hyunggyu", 
        "id": "sg:person.0671300371.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671300371.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "Max Planck Institute for Dynamics and Self-Organization (MPI DS), 37077, G\u00f6ttingen, Germany", 
            "Faculty of Physics, Georg August University G\u00f6ttingen, 37077, G\u00f6ttingen, Germany", 
            "Faculty of Mathematics and Computer Sciences, Georg August University G\u00f6ttingen, 37073, G\u00f6ttingen, Germany", 
            "Politecnico di Torino, Department of Mathematical Sciences, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vollmer", 
        "givenName": "J.", 
        "id": "sg:person.01317201027.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317201027.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2002rg000123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002812886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.218303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005402595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.218303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005402595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.032117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010352025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.88.032117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010352025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.011308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010770528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.011308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010770528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013163937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.51.1745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013163937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/12/126001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014658892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.088303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015481228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.088303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015481228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016725108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017985855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016725108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017985855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018501444", 
          "https://doi.org/10.1038/nphys1821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-062910-140506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018545718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020571860", 
          "https://doi.org/10.1038/nature04061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020571860", 
          "https://doi.org/10.1038/nature04061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020571860", 
          "https://doi.org/10.1038/nature04061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02179860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020627908", 
          "https://doi.org/10.1007/bf02179860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02179860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020627908", 
          "https://doi.org/10.1007/bf02179860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022461591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022461591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415594a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684332", 
          "https://doi.org/10.1038/415594a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415594a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684332", 
          "https://doi.org/10.1038/415594a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415614a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029656824", 
          "https://doi.org/10.1038/415614a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415614a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029656824", 
          "https://doi.org/10.1038/415614a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029804773", 
          "https://doi.org/10.1038/nphys3230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1010059108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030650357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.2721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031806362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.2721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031806362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033032862", 
          "https://doi.org/10.1038/nature04801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033032862", 
          "https://doi.org/10.1038/nature04801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033032862", 
          "https://doi.org/10.1038/nature04801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039323196", 
          "https://doi.org/10.1038/srep07324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039848087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039848087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2008.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042272723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.095703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044153245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.095703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044153245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.178001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045181536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.178001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045181536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047923366", 
          "https://doi.org/10.1038/nphys3471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050584535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b927228c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053242256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b927228c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053242256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0887-3828(2009)23:2(65)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057610929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.50.1645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.50.1645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.012305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.012305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.052902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.052902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.015701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.1259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.68.1259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.77.123002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/111/28001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064226996"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12", 
    "datePublishedReg": "2017-12-01", 
    "description": "Soft particulate media include a wide range of systems involving athermal dissipative particles both in non-living and biological materials. Characterization of flows of particulate media is of great practical and theoretical importance. A fascinating feature of these systems is the existence of a critical rigidity transition in the dense regime dominated by highly intermittent fluctuations that severely affects the flow properties. Here, we unveil the underlying mechanisms of rare fluctuations in soft particulate flows. We find that rare fluctuations have different origins above and below the critical jamming density and become suppressed near the jamming transition. We then conjecture a time-independent local fluctuation relation, which we verify numerically, and that gives rise to an effective temperature. We discuss similarities and differences between our proposed effective temperature with the conventional kinetic temperature in the system by means of a universal scaling collapse.Soft particulate flows such as granular media are prone to fluctuations like jamming and avalanches. Here Rahbari et al. consider the statistics of rare fluctuations to identify an effective temperature which, unlike previous ones, is valid for packing fractions both near and far from the jamming point.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41467-017-00022-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1043282", 
        "issn": [
          "2041-1723"
        ], 
        "name": "Nature Communications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Characterizing rare fluctuations in soft particulate flows", 
    "pagination": "11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56e663ac50ca24165214f748e4c6da2fd5655e4a37cf685a1fe1d07e97532226"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28396590"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101528555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41467-017-00022-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084537785"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41467-017-00022-8", 
      "https://app.dimensions.ai/details/publication/pub.1084537785"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41467-017-00022-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00022-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00022-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00022-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41467-017-00022-8'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41467-017-00022-8 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N3909d8f823aa41c09d55ec53e6ded337
4 schema:citation sg:pub.10.1007/bf02179860
5 sg:pub.10.1038/415594a
6 sg:pub.10.1038/415614a
7 sg:pub.10.1038/nature04061
8 sg:pub.10.1038/nature04801
9 sg:pub.10.1038/nphys1821
10 sg:pub.10.1038/nphys3230
11 sg:pub.10.1038/nphys3471
12 sg:pub.10.1038/srep07324
13 https://doi.org/10.1016/j.physrep.2008.02.002
14 https://doi.org/10.1029/2002rg000123
15 https://doi.org/10.1039/b927228c
16 https://doi.org/10.1061/(asce)0887-3828(2009)23:2(65)
17 https://doi.org/10.1073/pnas.1010059108
18 https://doi.org/10.1073/pnas.1016725108
19 https://doi.org/10.1088/0034-4885/75/12/126001
20 https://doi.org/10.1103/physreve.50.1645
21 https://doi.org/10.1103/physreve.51.1745
22 https://doi.org/10.1103/physreve.60.2721
23 https://doi.org/10.1103/physreve.80.011308
24 https://doi.org/10.1103/physreve.88.032117
25 https://doi.org/10.1103/physreve.92.012305
26 https://doi.org/10.1103/physreve.93.052902
27 https://doi.org/10.1103/physrevlett.102.218303
28 https://doi.org/10.1103/physrevlett.105.088303
29 https://doi.org/10.1103/physrevlett.111.015701
30 https://doi.org/10.1103/physrevlett.71.2401
31 https://doi.org/10.1103/physrevlett.74.14
32 https://doi.org/10.1103/physrevlett.74.2694
33 https://doi.org/10.1103/physrevlett.75.4780
34 https://doi.org/10.1103/physrevlett.77.3110
35 https://doi.org/10.1103/physrevlett.78.2020
36 https://doi.org/10.1103/physrevlett.78.2690
37 https://doi.org/10.1103/physrevlett.89.095703
38 https://doi.org/10.1103/physrevlett.99.178001
39 https://doi.org/10.1103/revmodphys.68.1259
40 https://doi.org/10.1103/revmodphys.71.s374
41 https://doi.org/10.1143/jpsj.77.123002
42 https://doi.org/10.1146/annurev-conmatphys-062910-140506
43 https://doi.org/10.1209/0295-5075/111/28001
44 schema:datePublished 2017-12
45 schema:datePublishedReg 2017-12-01
46 schema:description Soft particulate media include a wide range of systems involving athermal dissipative particles both in non-living and biological materials. Characterization of flows of particulate media is of great practical and theoretical importance. A fascinating feature of these systems is the existence of a critical rigidity transition in the dense regime dominated by highly intermittent fluctuations that severely affects the flow properties. Here, we unveil the underlying mechanisms of rare fluctuations in soft particulate flows. We find that rare fluctuations have different origins above and below the critical jamming density and become suppressed near the jamming transition. We then conjecture a time-independent local fluctuation relation, which we verify numerically, and that gives rise to an effective temperature. We discuss similarities and differences between our proposed effective temperature with the conventional kinetic temperature in the system by means of a universal scaling collapse.Soft particulate flows such as granular media are prone to fluctuations like jamming and avalanches. Here Rahbari et al. consider the statistics of rare fluctuations to identify an effective temperature which, unlike previous ones, is valid for packing fractions both near and far from the jamming point.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N06e859f13d83474eadf96f916af7c365
51 N8cd1d1a4eb3b457db02ca19f4688aa11
52 sg:journal.1043282
53 schema:name Characterizing rare fluctuations in soft particulate flows
54 schema:pagination 11
55 schema:productId N0ffe63a7b0b049c99cac88af1e3eccd7
56 N15e82f5a590d40168e9ee4dd9f7e4de4
57 N7d5824c1fbdd4155853083eb57826ef1
58 N7db0404500584ce4bc4a3f4e830e5032
59 Naf39ae36801d4c7d8c9dedc4fb5cf295
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084537785
61 https://doi.org/10.1038/s41467-017-00022-8
62 schema:sdDatePublished 2019-04-11T00:11
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N374a86f5d2d04e36beccc77c8ff38478
65 schema:url https://www.nature.com/articles/s41467-017-00022-8
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0573ddbb32c049a287d27dbeac613388 rdf:first sg:person.01317201027.20
70 rdf:rest rdf:nil
71 N06e859f13d83474eadf96f916af7c365 schema:volumeNumber 8
72 rdf:type schema:PublicationVolume
73 N0ffe63a7b0b049c99cac88af1e3eccd7 schema:name nlm_unique_id
74 schema:value 101528555
75 rdf:type schema:PropertyValue
76 N15e82f5a590d40168e9ee4dd9f7e4de4 schema:name doi
77 schema:value 10.1038/s41467-017-00022-8
78 rdf:type schema:PropertyValue
79 N374a86f5d2d04e36beccc77c8ff38478 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N3909d8f823aa41c09d55ec53e6ded337 rdf:first sg:person.01322026715.66
82 rdf:rest N8195e4648f5e4665ba792af2f8a48482
83 N7d5824c1fbdd4155853083eb57826ef1 schema:name pubmed_id
84 schema:value 28396590
85 rdf:type schema:PropertyValue
86 N7db0404500584ce4bc4a3f4e830e5032 schema:name dimensions_id
87 schema:value pub.1084537785
88 rdf:type schema:PropertyValue
89 N8195e4648f5e4665ba792af2f8a48482 rdf:first sg:person.0636374542.84
90 rdf:rest Nb86a46828ef04097ac2bd9a4e8f9cfe0
91 N8cd1d1a4eb3b457db02ca19f4688aa11 schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 Naf39ae36801d4c7d8c9dedc4fb5cf295 schema:name readcube_id
94 schema:value 56e663ac50ca24165214f748e4c6da2fd5655e4a37cf685a1fe1d07e97532226
95 rdf:type schema:PropertyValue
96 Nb86a46828ef04097ac2bd9a4e8f9cfe0 rdf:first sg:person.0671300371.95
97 rdf:rest N0573ddbb32c049a287d27dbeac613388
98 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
99 schema:name Engineering
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
102 schema:name Interdisciplinary Engineering
103 rdf:type schema:DefinedTerm
104 sg:journal.1043282 schema:issn 2041-1723
105 schema:name Nature Communications
106 rdf:type schema:Periodical
107 sg:person.01317201027.20 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
108 schema:familyName Vollmer
109 schema:givenName J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01317201027.20
111 rdf:type schema:Person
112 sg:person.01322026715.66 schema:affiliation https://www.grid.ac/institutes/grid.249961.1
113 schema:familyName Rahbari
114 schema:givenName S.H.E.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01322026715.66
116 rdf:type schema:Person
117 sg:person.0636374542.84 schema:affiliation https://www.grid.ac/institutes/grid.6190.e
118 schema:familyName Saberi
119 schema:givenName A.A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636374542.84
121 rdf:type schema:Person
122 sg:person.0671300371.95 schema:affiliation https://www.grid.ac/institutes/grid.249961.1
123 schema:familyName Park
124 schema:givenName Hyunggyu
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671300371.95
126 rdf:type schema:Person
127 sg:pub.10.1007/bf02179860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020627908
128 https://doi.org/10.1007/bf02179860
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/415594a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684332
131 https://doi.org/10.1038/415594a
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/415614a schema:sameAs https://app.dimensions.ai/details/publication/pub.1029656824
134 https://doi.org/10.1038/415614a
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nature04061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020571860
137 https://doi.org/10.1038/nature04061
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nature04801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033032862
140 https://doi.org/10.1038/nature04801
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nphys1821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018501444
143 https://doi.org/10.1038/nphys1821
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphys3230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029804773
146 https://doi.org/10.1038/nphys3230
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphys3471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047923366
149 https://doi.org/10.1038/nphys3471
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep07324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039323196
152 https://doi.org/10.1038/srep07324
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.physrep.2008.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042272723
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1029/2002rg000123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002812886
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1039/b927228c schema:sameAs https://app.dimensions.ai/details/publication/pub.1053242256
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1061/(asce)0887-3828(2009)23:2(65) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057610929
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.1010059108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030650357
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1073/pnas.1016725108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017985855
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/0034-4885/75/12/126001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014658892
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physreve.50.1645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716927
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physreve.51.1745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013163937
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreve.60.2721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031806362
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.80.011308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010770528
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.88.032117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010352025
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.92.012305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060747759
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.93.052902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749737
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.102.218303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005402595
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.105.088303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015481228
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.111.015701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761756
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.71.2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807744
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.74.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022461591
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.74.2694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031383800
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.75.4780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812381
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.77.3110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814026
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.78.2020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039848087
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.78.2690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050584535
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.89.095703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044153245
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.99.178001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045181536
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/revmodphys.68.1259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839364
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/revmodphys.71.s374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839491
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1143/jpsj.77.123002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063123874
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1146/annurev-conmatphys-062910-140506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018545718
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1209/0295-5075/111/28001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064226996
215 rdf:type schema:CreativeWork
216 https://www.grid.ac/institutes/grid.249961.1 schema:alternateName Korea Institute for Advanced Study
217 schema:name School of Physics, Korea Institute for Advanced Study, 130-722, Seoul, South Korea
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
220 schema:name Faculty of Mathematics and Computer Sciences, Georg August University Göttingen, 37073, Göttingen, Germany
221 Faculty of Physics, Georg August University Göttingen, 37077, Göttingen, Germany
222 Max Planck Institute for Dynamics and Self-Organization (MPI DS), 37077, Göttingen, Germany
223 Politecnico di Torino, Department of Mathematical Sciences, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.6190.e schema:alternateName University of Cologne
226 schema:name Department of Physics, College of Science, University of Tehran, 14395-547, Tehran, Iran
227 Institut für Theoretische Physik, Universitat zu Köln, Zülpicher Strasse 77, 50937, Köln, Germany
228 School of Physics and Accelerators, Institute for research in Fundamental Science (IPM), 19395-5531, Tehran, Iran
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...