Predictive power of home blood pressure measurement for cardiovascular outcomes in patients with type 2 diabetes: KAMOGAWA-HBP study View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-12-07

AUTHORS

Emi Ushigome, Nobuko Kitagawa, Noriyuki Kitagawa, Toru Tanaka, Goji Hasegawa, Masayoshi Ohnishi, Sei Tsunoda, Hidetaka Ushigome, Isao Yokota, Naoto Nakamura, Mai Asano, Masahide Hamaguchi, Masahiro Yamazaki, Michiaki Fukui

ABSTRACT

Our previous study showed that the morning systolic blood pressure target should be <120 mmHg to prevent the onset or progression of diabetic nephropathy in patients with type 2 diabetes. In this study, we examined the prognostic values of home and clinical blood pressure for first cardiovascular events in the same cohort. Morning and evening home blood pressure measurements were obtained in triplicate for 14 consecutive days from the beginning of the study in a retrospective cohort of 1081 type 2 diabetes patients (44.5% women; median age 66.0 years) with no history of macrovascular complications. The first major cardiovascular event was the primary endpoint; the risk was examined by the Cox proportional hazards model. After a mean follow-up of 6.63 years, first-time cardiovascular events occurred in 119 patients (incidence, 16.6/1000 patient-years). Baseline morning systolic blood pressure (hazard ratio: 1.14, 95% CI 1.01–1.28) significantly predicted cardiovascular events, whereas clinical blood pressure did not. The adjusted hazard ratio (95% CI) for the incidence of cardiovascular events in patients with morning systolic blood pressure ≥135 mmHg tended to be higher than that in those with morning systolic blood pressure <125 mmHg [1.67 (0.94–2.97)]. Elevated home blood pressure measurement is a predictor of future cardiovascular events in type 2 diabetes patients and may be superior to clinical blood pressure measurement in this regard. More... »

PAGES

348-354

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41440-020-00584-z

DOI

http://dx.doi.org/10.1038/s41440-020-00584-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1133282987

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33288879


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Blood Pressure Monitoring, Ambulatory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cardiovascular Diseases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diabetes Mellitus, Type 2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushigome", 
        "givenName": "Emi", 
        "id": "sg:person.01102727762.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102727762.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitagawa", 
        "givenName": "Nobuko", 
        "id": "sg:person.013047652425.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013047652425.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kitagawa", 
        "givenName": "Noriyuki", 
        "id": "sg:person.01016600401.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016600401.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto First Red Cross Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415604.2", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto First Red Cross Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Toru", 
        "id": "sg:person.01303404601.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303404601.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Second Red Cross Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415627.3", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Second Red Cross Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Goji", 
        "id": "sg:person.01162763674.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Osaka General Hospital of West Japan Railway Company, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Endocrinology and Metabolism, Osaka General Hospital of West Japan Railway Company, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ohnishi", 
        "givenName": "Masayoshi", 
        "id": "sg:person.01306617663.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306617663.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Nishijin Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.416299.1", 
          "name": [
            "Department of Cardiology, Nishijin Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsunoda", 
        "givenName": "Sei", 
        "id": "sg:person.0672635313.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672635313.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushigome", 
        "givenName": "Hidetaka", 
        "id": "sg:person.01235133271.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235133271.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biostatistics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Biostatistics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokota", 
        "givenName": "Isao", 
        "id": "sg:person.0750637234.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750637234.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Saiseikai Kyoto Hospital, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Saiseikai Kyoto Hospital, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Naoto", 
        "id": "sg:person.0677442163.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asano", 
        "givenName": "Mai", 
        "id": "sg:person.01077516505.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077516505.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamaguchi", 
        "givenName": "Masahide", 
        "id": "sg:person.01013261701.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013261701.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamazaki", 
        "givenName": "Masahiro", 
        "id": "sg:person.01103041632.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.272458.e", 
          "name": [
            "Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Michiaki", 
        "id": "sg:person.016357516722.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1291/hypres.30.677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040244024", 
          "https://doi.org/10.1291/hypres.30.677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41440-019-0240-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112602859", 
          "https://doi.org/10.1038/s41440-019-0240-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2011.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008483438", 
          "https://doi.org/10.1038/hr.2011.128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2012.56", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047857298", 
          "https://doi.org/10.1038/hr.2012.56"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2014.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024628432", 
          "https://doi.org/10.1038/hr.2014.66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41440-019-0284-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1120027740", 
          "https://doi.org/10.1038/s41440-019-0284-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41440-019-0221-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113185061", 
          "https://doi.org/10.1038/s41440-019-0221-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-12-07", 
    "datePublishedReg": "2020-12-07", 
    "description": "Our previous study showed that the morning systolic blood pressure target should be <120\u2009mmHg to prevent the onset or progression of diabetic nephropathy in patients with type 2 diabetes. In this study, we examined the prognostic values of home and clinical blood pressure for first cardiovascular events in the same cohort. Morning and evening home blood pressure measurements were obtained in triplicate for 14 consecutive days from the beginning of the study in a retrospective cohort of 1081 type 2 diabetes patients (44.5% women; median age 66.0 years) with no history of macrovascular complications. The first major cardiovascular event was the primary endpoint; the risk was examined by the Cox proportional hazards model. After a mean follow-up of 6.63 years, first-time cardiovascular events occurred in 119 patients (incidence, 16.6/1000 patient-years). Baseline morning systolic blood pressure (hazard ratio: 1.14, 95% CI 1.01\u20131.28) significantly predicted cardiovascular events, whereas clinical blood pressure did not. The adjusted hazard ratio (95% CI) for the incidence of cardiovascular events in patients with morning systolic blood pressure \u2265135\u2009mmHg tended to be higher than that in those with morning systolic blood pressure <125\u2009mmHg [1.67 (0.94\u20132.97)]. Elevated home blood pressure measurement is a predictor of future cardiovascular events in type 2 diabetes patients and may be superior to clinical blood pressure measurement in this regard.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41440-020-00584-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "morning systolic blood pressure", 
      "home blood pressure measurement", 
      "blood pressure measurements", 
      "systolic blood pressure", 
      "type 2 diabetes patients", 
      "clinical blood pressure", 
      "cardiovascular events", 
      "blood pressure", 
      "type 2 diabetes", 
      "diabetes patients", 
      "evening home blood pressure measurements", 
      "systolic blood pressure target", 
      "first major cardiovascular event", 
      "clinical blood pressure measurement", 
      "Cox proportional hazards model", 
      "first-time cardiovascular events", 
      "blood pressure targets", 
      "KAMOGAWA-HBP study", 
      "major cardiovascular events", 
      "adjusted hazard ratio", 
      "first cardiovascular event", 
      "future cardiovascular events", 
      "proportional hazards model", 
      "pressure measurements", 
      "macrovascular complications", 
      "primary endpoint", 
      "cardiovascular outcomes", 
      "pressure targets", 
      "diabetic nephropathy", 
      "retrospective cohort", 
      "hazard ratio", 
      "prognostic value", 
      "hazards model", 
      "patients", 
      "consecutive days", 
      "same cohort", 
      "mmHg", 
      "diabetes", 
      "cohort", 
      "nephropathy", 
      "previous studies", 
      "complications", 
      "incidence", 
      "study", 
      "progression", 
      "endpoint", 
      "events", 
      "outcomes", 
      "risk", 
      "predictors", 
      "pressure", 
      "onset", 
      "days", 
      "predictive power", 
      "morning", 
      "years", 
      "home", 
      "target", 
      "history", 
      "triplicate", 
      "regard", 
      "measurements", 
      "ratio", 
      "beginning", 
      "values", 
      "model", 
      "power"
    ], 
    "name": "Predictive power of home blood pressure measurement for cardiovascular outcomes in patients with type 2 diabetes: KAMOGAWA-HBP study", 
    "pagination": "348-354", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1133282987"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41440-020-00584-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33288879"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41440-020-00584-z", 
      "https://app.dimensions.ai/details/publication/pub.1133282987"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_830.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41440-020-00584-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00584-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00584-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00584-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00584-z'


 

This table displays all metadata directly associated to this object as RDF triples.

306 TRIPLES      22 PREDICATES      110 URIs      94 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41440-020-00584-z schema:about N116abe0e6f624ac489fc5e563e5b54c1
2 N217e3c5e61974ae1afa4f571a6d6b520
3 N5b56ab1dd44c44f8b2d756706fa52914
4 Nb0d0c892d86348e8a9a12296b980f193
5 Nc340486d8a4c4165b4a0b9cffb805f34
6 Nc5756125e425435f8a4893e56b8f844a
7 Nd357ff70e1314ec9b4622d748333e0fd
8 Ndbe5584eeb324d758130225098546131
9 Nfed0c529121e4ed5b311031bddb1e17e
10 anzsrc-for:11
11 anzsrc-for:1102
12 anzsrc-for:1103
13 schema:author Nfaa037e4558247e093a9064b63e2bb91
14 schema:citation sg:pub.10.1038/hr.2011.128
15 sg:pub.10.1038/hr.2012.56
16 sg:pub.10.1038/hr.2014.66
17 sg:pub.10.1038/s41440-019-0221-y
18 sg:pub.10.1038/s41440-019-0240-8
19 sg:pub.10.1038/s41440-019-0284-9
20 sg:pub.10.1291/hypres.30.677
21 schema:datePublished 2020-12-07
22 schema:datePublishedReg 2020-12-07
23 schema:description Our previous study showed that the morning systolic blood pressure target should be <120 mmHg to prevent the onset or progression of diabetic nephropathy in patients with type 2 diabetes. In this study, we examined the prognostic values of home and clinical blood pressure for first cardiovascular events in the same cohort. Morning and evening home blood pressure measurements were obtained in triplicate for 14 consecutive days from the beginning of the study in a retrospective cohort of 1081 type 2 diabetes patients (44.5% women; median age 66.0 years) with no history of macrovascular complications. The first major cardiovascular event was the primary endpoint; the risk was examined by the Cox proportional hazards model. After a mean follow-up of 6.63 years, first-time cardiovascular events occurred in 119 patients (incidence, 16.6/1000 patient-years). Baseline morning systolic blood pressure (hazard ratio: 1.14, 95% CI 1.01–1.28) significantly predicted cardiovascular events, whereas clinical blood pressure did not. The adjusted hazard ratio (95% CI) for the incidence of cardiovascular events in patients with morning systolic blood pressure ≥135 mmHg tended to be higher than that in those with morning systolic blood pressure <125 mmHg [1.67 (0.94–2.97)]. Elevated home blood pressure measurement is a predictor of future cardiovascular events in type 2 diabetes patients and may be superior to clinical blood pressure measurement in this regard.
24 schema:genre article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N87d263d8bf0f423f92da0deef3c33322
28 N8a43f3c47343493fa50767811f787ee8
29 sg:journal.1313717
30 schema:keywords Cox proportional hazards model
31 KAMOGAWA-HBP study
32 adjusted hazard ratio
33 beginning
34 blood pressure
35 blood pressure measurements
36 blood pressure targets
37 cardiovascular events
38 cardiovascular outcomes
39 clinical blood pressure
40 clinical blood pressure measurement
41 cohort
42 complications
43 consecutive days
44 days
45 diabetes
46 diabetes patients
47 diabetic nephropathy
48 endpoint
49 evening home blood pressure measurements
50 events
51 first cardiovascular event
52 first major cardiovascular event
53 first-time cardiovascular events
54 future cardiovascular events
55 hazard ratio
56 hazards model
57 history
58 home
59 home blood pressure measurement
60 incidence
61 macrovascular complications
62 major cardiovascular events
63 measurements
64 mmHg
65 model
66 morning
67 morning systolic blood pressure
68 nephropathy
69 onset
70 outcomes
71 patients
72 power
73 predictive power
74 predictors
75 pressure
76 pressure measurements
77 pressure targets
78 previous studies
79 primary endpoint
80 prognostic value
81 progression
82 proportional hazards model
83 ratio
84 regard
85 retrospective cohort
86 risk
87 same cohort
88 study
89 systolic blood pressure
90 systolic blood pressure target
91 target
92 triplicate
93 type 2 diabetes
94 type 2 diabetes patients
95 values
96 years
97 schema:name Predictive power of home blood pressure measurement for cardiovascular outcomes in patients with type 2 diabetes: KAMOGAWA-HBP study
98 schema:pagination 348-354
99 schema:productId Nd8e145e72bce45888a397a6def1a966f
100 Nf09ed8dcf3a34015a97218abd2915098
101 Nfeb9a7611e454fec861dcea412f2ee99
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1133282987
103 https://doi.org/10.1038/s41440-020-00584-z
104 schema:sdDatePublished 2022-05-20T07:35
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N7ab8e711f3d6417a85c18121b8c43b1d
107 schema:url https://doi.org/10.1038/s41440-020-00584-z
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N07a017d8b0b34ead933149fd62e9ba49 rdf:first sg:person.01303404601.95
112 rdf:rest N5ed698d9a2df49d59fa84a9ac8cc7a34
113 N0c1b021374c24498aa2bc829ffa8a6a3 rdf:first sg:person.0672635313.53
114 rdf:rest N7096cffbdacc410f9909045f0caf46ea
115 N116abe0e6f624ac489fc5e563e5b54c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Retrospective Studies
117 rdf:type schema:DefinedTerm
118 N217e3c5e61974ae1afa4f571a6d6b520 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Male
120 rdf:type schema:DefinedTerm
121 N4d19a76681d34f0ba4454d02eb9c048d rdf:first sg:person.01306617663.92
122 rdf:rest N0c1b021374c24498aa2bc829ffa8a6a3
123 N5b56ab1dd44c44f8b2d756706fa52914 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Female
125 rdf:type schema:DefinedTerm
126 N5ed698d9a2df49d59fa84a9ac8cc7a34 rdf:first sg:person.01162763674.43
127 rdf:rest N4d19a76681d34f0ba4454d02eb9c048d
128 N6fd8079bf4f14927abe8ab186d569c86 rdf:first sg:person.016357516722.38
129 rdf:rest rdf:nil
130 N7096cffbdacc410f9909045f0caf46ea rdf:first sg:person.01235133271.77
131 rdf:rest Nc017887f54364fd0b1a6f8bb435abb11
132 N714ce809d61a4f50991fd426fffa705b rdf:first sg:person.0677442163.58
133 rdf:rest Nee4d742d1b904fa69a75ebb601746987
134 N7ab8e711f3d6417a85c18121b8c43b1d schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 N7b82544c6a8f4384aac64c962ef46ccc rdf:first sg:person.013047652425.52
137 rdf:rest Nc070d519c593447a8cd63092782fc4dc
138 N87d263d8bf0f423f92da0deef3c33322 schema:issueNumber 3
139 rdf:type schema:PublicationIssue
140 N8a43f3c47343493fa50767811f787ee8 schema:volumeNumber 44
141 rdf:type schema:PublicationVolume
142 N934d43cd572349c8b602706d8739ab80 rdf:first sg:person.01013261701.08
143 rdf:rest Nac0c87d7c0124c9c878d6c918a803858
144 Nac0c87d7c0124c9c878d6c918a803858 rdf:first sg:person.01103041632.87
145 rdf:rest N6fd8079bf4f14927abe8ab186d569c86
146 Nb0d0c892d86348e8a9a12296b980f193 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Diabetes Mellitus, Type 2
148 rdf:type schema:DefinedTerm
149 Nc017887f54364fd0b1a6f8bb435abb11 rdf:first sg:person.0750637234.00
150 rdf:rest N714ce809d61a4f50991fd426fffa705b
151 Nc070d519c593447a8cd63092782fc4dc rdf:first sg:person.01016600401.14
152 rdf:rest N07a017d8b0b34ead933149fd62e9ba49
153 Nc340486d8a4c4165b4a0b9cffb805f34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Blood Pressure
155 rdf:type schema:DefinedTerm
156 Nc5756125e425435f8a4893e56b8f844a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Humans
158 rdf:type schema:DefinedTerm
159 Nd357ff70e1314ec9b4622d748333e0fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Cardiovascular Diseases
161 rdf:type schema:DefinedTerm
162 Nd8e145e72bce45888a397a6def1a966f schema:name dimensions_id
163 schema:value pub.1133282987
164 rdf:type schema:PropertyValue
165 Ndbe5584eeb324d758130225098546131 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Blood Pressure Monitoring, Ambulatory
167 rdf:type schema:DefinedTerm
168 Nee4d742d1b904fa69a75ebb601746987 rdf:first sg:person.01077516505.40
169 rdf:rest N934d43cd572349c8b602706d8739ab80
170 Nf09ed8dcf3a34015a97218abd2915098 schema:name pubmed_id
171 schema:value 33288879
172 rdf:type schema:PropertyValue
173 Nfaa037e4558247e093a9064b63e2bb91 rdf:first sg:person.01102727762.08
174 rdf:rest N7b82544c6a8f4384aac64c962ef46ccc
175 Nfeb9a7611e454fec861dcea412f2ee99 schema:name doi
176 schema:value 10.1038/s41440-020-00584-z
177 rdf:type schema:PropertyValue
178 Nfed0c529121e4ed5b311031bddb1e17e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Aged
180 rdf:type schema:DefinedTerm
181 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
182 schema:name Medical and Health Sciences
183 rdf:type schema:DefinedTerm
184 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
185 schema:name Cardiorespiratory Medicine and Haematology
186 rdf:type schema:DefinedTerm
187 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
188 schema:name Clinical Sciences
189 rdf:type schema:DefinedTerm
190 sg:journal.1313717 schema:issn 0916-9636
191 1348-4214
192 schema:name Hypertension Research
193 schema:publisher Springer Nature
194 rdf:type schema:Periodical
195 sg:person.01013261701.08 schema:affiliation grid-institutes:grid.272458.e
196 schema:familyName Hamaguchi
197 schema:givenName Masahide
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013261701.08
199 rdf:type schema:Person
200 sg:person.01016600401.14 schema:affiliation grid-institutes:grid.272458.e
201 schema:familyName Kitagawa
202 schema:givenName Noriyuki
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016600401.14
204 rdf:type schema:Person
205 sg:person.01077516505.40 schema:affiliation grid-institutes:grid.272458.e
206 schema:familyName Asano
207 schema:givenName Mai
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077516505.40
209 rdf:type schema:Person
210 sg:person.01102727762.08 schema:affiliation grid-institutes:grid.272458.e
211 schema:familyName Ushigome
212 schema:givenName Emi
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01102727762.08
214 rdf:type schema:Person
215 sg:person.01103041632.87 schema:affiliation grid-institutes:grid.272458.e
216 schema:familyName Yamazaki
217 schema:givenName Masahiro
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103041632.87
219 rdf:type schema:Person
220 sg:person.01162763674.43 schema:affiliation grid-institutes:grid.415627.3
221 schema:familyName Hasegawa
222 schema:givenName Goji
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162763674.43
224 rdf:type schema:Person
225 sg:person.01235133271.77 schema:affiliation grid-institutes:grid.272458.e
226 schema:familyName Ushigome
227 schema:givenName Hidetaka
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235133271.77
229 rdf:type schema:Person
230 sg:person.01303404601.95 schema:affiliation grid-institutes:grid.415604.2
231 schema:familyName Tanaka
232 schema:givenName Toru
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303404601.95
234 rdf:type schema:Person
235 sg:person.013047652425.52 schema:affiliation grid-institutes:grid.272458.e
236 schema:familyName Kitagawa
237 schema:givenName Nobuko
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013047652425.52
239 rdf:type schema:Person
240 sg:person.01306617663.92 schema:affiliation grid-institutes:None
241 schema:familyName Ohnishi
242 schema:givenName Masayoshi
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306617663.92
244 rdf:type schema:Person
245 sg:person.016357516722.38 schema:affiliation grid-institutes:grid.272458.e
246 schema:familyName Fukui
247 schema:givenName Michiaki
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016357516722.38
249 rdf:type schema:Person
250 sg:person.0672635313.53 schema:affiliation grid-institutes:grid.416299.1
251 schema:familyName Tsunoda
252 schema:givenName Sei
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672635313.53
254 rdf:type schema:Person
255 sg:person.0677442163.58 schema:affiliation grid-institutes:None
256 schema:familyName Nakamura
257 schema:givenName Naoto
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0677442163.58
259 rdf:type schema:Person
260 sg:person.0750637234.00 schema:affiliation grid-institutes:grid.272458.e
261 schema:familyName Yokota
262 schema:givenName Isao
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0750637234.00
264 rdf:type schema:Person
265 sg:pub.10.1038/hr.2011.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008483438
266 https://doi.org/10.1038/hr.2011.128
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/hr.2012.56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047857298
269 https://doi.org/10.1038/hr.2012.56
270 rdf:type schema:CreativeWork
271 sg:pub.10.1038/hr.2014.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024628432
272 https://doi.org/10.1038/hr.2014.66
273 rdf:type schema:CreativeWork
274 sg:pub.10.1038/s41440-019-0221-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1113185061
275 https://doi.org/10.1038/s41440-019-0221-y
276 rdf:type schema:CreativeWork
277 sg:pub.10.1038/s41440-019-0240-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112602859
278 https://doi.org/10.1038/s41440-019-0240-8
279 rdf:type schema:CreativeWork
280 sg:pub.10.1038/s41440-019-0284-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120027740
281 https://doi.org/10.1038/s41440-019-0284-9
282 rdf:type schema:CreativeWork
283 sg:pub.10.1291/hypres.30.677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040244024
284 https://doi.org/10.1291/hypres.30.677
285 rdf:type schema:CreativeWork
286 grid-institutes:None schema:alternateName Department of Endocrinology and Metabolism, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
287 Saiseikai Kyoto Hospital, Kyoto, Japan
288 schema:name Department of Endocrinology and Metabolism, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
289 Saiseikai Kyoto Hospital, Kyoto, Japan
290 rdf:type schema:Organization
291 grid-institutes:grid.272458.e schema:alternateName Department of Biostatistics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
292 Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
293 Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
294 schema:name Department of Biostatistics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
295 Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
296 Department of Organ Transplantation and General Surgery, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
297 rdf:type schema:Organization
298 grid-institutes:grid.415604.2 schema:alternateName Department of Endocrinology and Metabolism, Kyoto First Red Cross Hospital, Kyoto, Japan
299 schema:name Department of Endocrinology and Metabolism, Kyoto First Red Cross Hospital, Kyoto, Japan
300 rdf:type schema:Organization
301 grid-institutes:grid.415627.3 schema:alternateName Department of Endocrinology and Metabolism, Kyoto Second Red Cross Hospital, Kyoto, Japan
302 schema:name Department of Endocrinology and Metabolism, Kyoto Second Red Cross Hospital, Kyoto, Japan
303 rdf:type schema:Organization
304 grid-institutes:grid.416299.1 schema:alternateName Department of Cardiology, Nishijin Hospital, Kyoto, Japan
305 schema:name Department of Cardiology, Nishijin Hospital, Kyoto, Japan
306 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...