Renin–angiotensin system inhibitors and the severity of coronavirus disease 2019 in Kanagawa, Japan: a retrospective cohort study View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-21

AUTHORS

Yasushi Matsuzawa, Hisao Ogawa, Kazuo Kimura, Masaaki Konishi, Jin Kirigaya, Kazuki Fukui, Kengo Tsukahara, Hiroyuki Shimizu, Keisuke Iwabuchi, Yu Yamada, Kenichiro Saka, Ichiro Takeuchi, Toshio Hirano, Kouichi Tamura

ABSTRACT

Since the beginning of the coronavirus disease 2019 (COVID-19) outbreak initiated on the Diamond Princess Cruise Ship at Yokohama harbor in February 2020, we have been doing our best to treat COVID-19 patients. In animal experiments, angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) are reported to suppress the downregulation of angiotensin converting enzyme 2 (ACE2), and they may inhibit the worsening of pathological conditions. We aimed to examine whether preceding use of ACEIs and ARBs affected the clinical manifestations and prognosis of COVID-19 patients. One hundred fifty-one consecutive patients (mean age 60 ± 19 years) with polymerase-chain-reaction proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who were admitted to six hospitals in Kanagawa Prefecture, Japan, were analyzed in this multicenter retrospective observational study. Among all COVID-19 patients, in the multiple regression analysis, older age (age ≥ 65 years) was significantly associated with the primary composite outcome (odds ratio (OR) 6.63, 95% confidence interval (CI) 2.28–22.78, P < 0.001), which consisted of (i) in-hospital death, (ii) extracorporeal membrane oxygenation, (iii) mechanical ventilation, including invasive and noninvasive methods, and (iv) admission to the intensive care unit. In COVID-19 patients with hypertension, preceding ACEI/ARB use was significantly associated with a lower occurrence of new-onset or worsening mental confusion (OR 0.06, 95% CI 0.002–0.69, P = 0.02), which was defined by the confusion criterion, which included mild disorientation or hallucination with an estimation of medical history of mental status, after adjustment for age, sex, and diabetes. In conclusion, older age was a significant contributor to a worse prognosis in COVID-19 patients, and ACEIs/ARBs could be beneficial for the prevention of confusion in COVID-19 patients with hypertension. More... »

PAGES

1257-1266

Journal

TITLE

Hypertension Research

ISSUE

11

VOLUME

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41440-020-00535-8

DOI

http://dx.doi.org/10.1038/s41440-020-00535-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1130238072

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32820236


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Age Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiotensin II Type 1 Receptor Blockers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiotensin-Converting Enzyme Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Betacoronavirus", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "COVID-19", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Confusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coronavirus Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pandemics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pneumonia, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "SARS-CoV-2", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Severity of Illness Index", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.413045.7", 
          "name": [
            "Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsuzawa", 
        "givenName": "Yasushi", 
        "id": "sg:person.0621771644.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621771644.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Cerebral and Cardiovascular Center, Suita, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410796.d", 
          "name": [
            "National Cerebral and Cardiovascular Center, Suita, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ogawa", 
        "givenName": "Hisao", 
        "id": "sg:person.01301470144.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301470144.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.413045.7", 
          "name": [
            "Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimura", 
        "givenName": "Kazuo", 
        "id": "sg:person.016170645072.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170645072.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.268441.d", 
          "name": [
            "Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konishi", 
        "givenName": "Masaaki", 
        "id": "sg:person.01205511734.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205511734.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Emergency Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.268441.d", 
          "name": [
            "Department of Emergency Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirigaya", 
        "givenName": "Jin", 
        "id": "sg:person.010043017333.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043017333.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419708.3", 
          "name": [
            "Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fukui", 
        "givenName": "Kazuki", 
        "id": "sg:person.0650622624.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650622624.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Fujisawa City Hospital, Fujisawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415120.3", 
          "name": [
            "Division of Cardiology, Fujisawa City Hospital, Fujisawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsukahara", 
        "givenName": "Kengo", 
        "id": "sg:person.0606320560.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606320560.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Laboratory Medicine, Fujisawa City Hospital, Fujisawa, Japan", 
          "id": "http://www.grid.ac/institutes/grid.415120.3", 
          "name": [
            "Department of Clinical Laboratory Medicine, Fujisawa City Hospital, Fujisawa, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimizu", 
        "givenName": "Hiroyuki", 
        "id": "sg:person.012233340733.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233340733.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of General Medicine, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of General Medicine, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iwabuchi", 
        "givenName": "Keisuke", 
        "id": "sg:person.013030721333.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030721333.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Cardiology, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yamada", 
        "givenName": "Yu", 
        "id": "sg:person.013626301733.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626301733.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Cardiology, Yokosuka City Hospital, Yokosuka, Japan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Division of Cardiology, Yokosuka City Hospital, Yokosuka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saka", 
        "givenName": "Kenichiro", 
        "id": "sg:person.014423662333.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423662333.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Emergency Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.268441.d", 
          "name": [
            "Department of Emergency Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeuchi", 
        "givenName": "Ichiro", 
        "id": "sg:person.01211314122.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211314122.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Headquarters, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.482503.8", 
          "name": [
            "Headquarters, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirano", 
        "givenName": "Toshio", 
        "id": "sg:person.012553225362.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553225362.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.268441.d", 
          "name": [
            "Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamura", 
        "givenName": "Kouichi", 
        "id": "sg:person.013174322507.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174322507.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41440-020-0515-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129781692", 
          "https://doi.org/10.1038/s41440-020-0515-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro.2016.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015704176", 
          "https://doi.org/10.1038/nrmicro.2016.81"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13054-020-02882-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127125001", 
          "https://doi.org/10.1186/s13054-020-02882-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41440-020-0455-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1127146647", 
          "https://doi.org/10.1038/s41440-020-0455-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11427-020-1643-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1124803772", 
          "https://doi.org/10.1007/s11427-020-1643-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41440-020-0497-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1128551206", 
          "https://doi.org/10.1038/s41440-020-0497-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029184047", 
          "https://doi.org/10.1038/nm1267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052777805", 
          "https://doi.org/10.1038/srep19840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039019363", 
          "https://doi.org/10.1038/ncomms4594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003644008", 
          "https://doi.org/10.1038/nature03712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00401-010-0674-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039898887", 
          "https://doi.org/10.1007/s00401-010-0674-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-08-21", 
    "datePublishedReg": "2020-08-21", 
    "description": "Since the beginning of the coronavirus disease 2019 (COVID-19) outbreak initiated on the Diamond Princess Cruise Ship at Yokohama harbor in February 2020, we have been doing our best to treat COVID-19 patients. In animal experiments, angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) are reported to suppress the downregulation of angiotensin converting enzyme 2 (ACE2), and they may inhibit the worsening of pathological conditions. We aimed to examine whether preceding use of ACEIs and ARBs affected the clinical manifestations and prognosis of COVID-19 patients. One hundred fifty-one consecutive patients (mean age 60\u2009\u00b1\u200919 years) with polymerase-chain-reaction proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who were admitted to six hospitals in Kanagawa Prefecture, Japan, were analyzed in this multicenter retrospective observational study. Among all COVID-19 patients, in the multiple regression analysis, older age (age\u2009\u2265\u200965 years) was significantly associated with the primary composite outcome (odds ratio (OR) 6.63, 95% confidence interval (CI) 2.28\u201322.78, P\u2009<\u20090.001), which consisted of (i) in-hospital death, (ii) extracorporeal membrane oxygenation, (iii) mechanical ventilation, including invasive and noninvasive methods, and (iv) admission to the intensive care unit. In COVID-19 patients with hypertension, preceding ACEI/ARB use was significantly associated with a lower occurrence of new-onset or worsening mental confusion (OR 0.06, 95% CI 0.002\u20130.69, P\u2009=\u20090.02), which was defined by the confusion criterion, which included mild disorientation or hallucination with an estimation of medical history of mental status, after adjustment for age, sex, and diabetes. In conclusion, older age was a significant contributor to a worse prognosis in COVID-19 patients, and ACEIs/ARBs could be beneficial for the prevention of confusion in COVID-19 patients with hypertension.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41440-020-00535-8", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "43"
      }
    ], 
    "keywords": [
      "angiotensin II type 1 receptor blocker", 
      "COVID-19 patients", 
      "severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection", 
      "acute respiratory syndrome coronavirus 2 infection", 
      "syndrome coronavirus 2 infection", 
      "renin-angiotensin system inhibitors", 
      "type 1 receptor blocker", 
      "multicenter retrospective observational study", 
      "ACEI/ARB use", 
      "older age", 
      "downregulation of angiotensin", 
      "coronavirus 2 infection", 
      "primary composite outcome", 
      "use of ACEIs", 
      "retrospective cohort study", 
      "retrospective observational study", 
      "intensive care unit", 
      "coronavirus disease 2019 (COVID-19) outbreak", 
      "coronavirus disease 2019", 
      "disease 2019 outbreak", 
      "mild disorientation", 
      "hospital death", 
      "ARB use", 
      "receptor blockers", 
      "composite outcome", 
      "cohort study", 
      "consecutive patients", 
      "membrane oxygenation", 
      "mechanical ventilation", 
      "care unit", 
      "worse prognosis", 
      "clinical manifestations", 
      "system inhibitors", 
      "medical history", 
      "mental status", 
      "mental confusion", 
      "observational study", 
      "enzyme 2", 
      "disease 2019", 
      "patients", 
      "enzyme inhibitors", 
      "Diamond Princess cruise ship", 
      "animal experiments", 
      "noninvasive method", 
      "pathological conditions", 
      "hypertension", 
      "angiotensin", 
      "prognosis", 
      "multiple regression analysis", 
      "regression analysis", 
      "age", 
      "low occurrence", 
      "inhibitors", 
      "prevention of confusion", 
      "ACEIs", 
      "diabetes", 
      "admission", 
      "significant contributor", 
      "blockers", 
      "hospital", 
      "worsening", 
      "infection", 
      "severity", 
      "prevention", 
      "hallucinations", 
      "oxygenation", 
      "ventilation", 
      "death", 
      "downregulation", 
      "manifestations", 
      "outcomes", 
      "sex", 
      "study", 
      "outbreak", 
      "conclusion", 
      "status", 
      "confusion", 
      "disorientation", 
      "use", 
      "adjustment", 
      "Kanagawa Prefecture", 
      "criteria", 
      "history", 
      "occurrence", 
      "Japan", 
      "contributor", 
      "cruise ships", 
      "Kanagawa", 
      "units", 
      "analysis", 
      "Prefecture", 
      "beginning", 
      "reaction", 
      "conditions", 
      "method", 
      "experiments", 
      "estimation", 
      "Harbor", 
      "ship"
    ], 
    "name": "Renin\u2013angiotensin system inhibitors and the severity of coronavirus disease 2019 in Kanagawa, Japan: a retrospective cohort study", 
    "pagination": "1257-1266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1130238072"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41440-020-00535-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32820236"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41440-020-00535-8", 
      "https://app.dimensions.ai/details/publication/pub.1130238072"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_875.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41440-020-00535-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00535-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00535-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00535-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41440-020-00535-8'


 

This table displays all metadata directly associated to this object as RDF triples.

401 TRIPLES      21 PREDICATES      155 URIs      136 LITERALS      27 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41440-020-00535-8 schema:about N111b98e9447a4cab95f31270654780a5
2 N19198c3676cf47b1aa16e1c6780b3cf8
3 N1b8023fc6aed4433945f54941715f6ab
4 N26256a23b45d4545b4173543ece392cf
5 N2b8558748dd043c6b6b08aeaad3900c1
6 N2c767e72315044e7809aa4578640dfdb
7 N3d6b07e0acaa40029cc091ad31446a33
8 N499627bf91f04525a53f7ccdd17564ff
9 N4ac0d17d2e23417db7c4a3aadd820571
10 N5c459b5e75e84ca6b9505f9b5dc21119
11 N73f6b706970845789f705b048f53d776
12 Nac873f658ebd406b8ca9ff6717716ab2
13 Nb6b78749944142a096531b7e6978b268
14 Nbb12074e689e4b8f8d1628adf896e464
15 Nca0fb2d724734c22aaad8df025ed8c7b
16 Nce7d2a4fc1674aeabe9dd3888e0a85ee
17 Ndb7f6a51005f438186a151e68cd179ab
18 Ne85fc9c4f3e44ec4bc8c274fbdbe1e16
19 Ne8fed919f10e491eb972dfceb50d0789
20 Nf124b54fd4ab4af589fc5ab3c26eb7b3
21 anzsrc-for:11
22 anzsrc-for:1103
23 schema:author N201bf865719848dcbbca875e81a4014e
24 schema:citation sg:pub.10.1007/s00401-010-0674-1
25 sg:pub.10.1007/s11427-020-1643-8
26 sg:pub.10.1038/nature03712
27 sg:pub.10.1038/ncomms4594
28 sg:pub.10.1038/nm1267
29 sg:pub.10.1038/nrmicro.2016.81
30 sg:pub.10.1038/s41440-020-0455-8
31 sg:pub.10.1038/s41440-020-0497-y
32 sg:pub.10.1038/s41440-020-0515-0
33 sg:pub.10.1038/srep19840
34 sg:pub.10.1186/s13054-020-02882-x
35 schema:datePublished 2020-08-21
36 schema:datePublishedReg 2020-08-21
37 schema:description Since the beginning of the coronavirus disease 2019 (COVID-19) outbreak initiated on the Diamond Princess Cruise Ship at Yokohama harbor in February 2020, we have been doing our best to treat COVID-19 patients. In animal experiments, angiotensin converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor blockers (ARBs) are reported to suppress the downregulation of angiotensin converting enzyme 2 (ACE2), and they may inhibit the worsening of pathological conditions. We aimed to examine whether preceding use of ACEIs and ARBs affected the clinical manifestations and prognosis of COVID-19 patients. One hundred fifty-one consecutive patients (mean age 60 ± 19 years) with polymerase-chain-reaction proven severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection who were admitted to six hospitals in Kanagawa Prefecture, Japan, were analyzed in this multicenter retrospective observational study. Among all COVID-19 patients, in the multiple regression analysis, older age (age ≥ 65 years) was significantly associated with the primary composite outcome (odds ratio (OR) 6.63, 95% confidence interval (CI) 2.28–22.78, P < 0.001), which consisted of (i) in-hospital death, (ii) extracorporeal membrane oxygenation, (iii) mechanical ventilation, including invasive and noninvasive methods, and (iv) admission to the intensive care unit. In COVID-19 patients with hypertension, preceding ACEI/ARB use was significantly associated with a lower occurrence of new-onset or worsening mental confusion (OR 0.06, 95% CI 0.002–0.69, P = 0.02), which was defined by the confusion criterion, which included mild disorientation or hallucination with an estimation of medical history of mental status, after adjustment for age, sex, and diabetes. In conclusion, older age was a significant contributor to a worse prognosis in COVID-19 patients, and ACEIs/ARBs could be beneficial for the prevention of confusion in COVID-19 patients with hypertension.
38 schema:genre article
39 schema:isAccessibleForFree true
40 schema:isPartOf N0ebd59587cdf461b8a375d7b5c7103a2
41 Nd705c64522f94889927ebad34216b7a5
42 sg:journal.1313717
43 schema:keywords ACEI/ARB use
44 ACEIs
45 ARB use
46 COVID-19 patients
47 Diamond Princess cruise ship
48 Harbor
49 Japan
50 Kanagawa
51 Kanagawa Prefecture
52 Prefecture
53 acute respiratory syndrome coronavirus 2 infection
54 adjustment
55 admission
56 age
57 analysis
58 angiotensin
59 angiotensin II type 1 receptor blocker
60 animal experiments
61 beginning
62 blockers
63 care unit
64 clinical manifestations
65 cohort study
66 composite outcome
67 conclusion
68 conditions
69 confusion
70 consecutive patients
71 contributor
72 coronavirus 2 infection
73 coronavirus disease 2019
74 coronavirus disease 2019 (COVID-19) outbreak
75 criteria
76 cruise ships
77 death
78 diabetes
79 disease 2019
80 disease 2019 outbreak
81 disorientation
82 downregulation
83 downregulation of angiotensin
84 enzyme 2
85 enzyme inhibitors
86 estimation
87 experiments
88 hallucinations
89 history
90 hospital
91 hospital death
92 hypertension
93 infection
94 inhibitors
95 intensive care unit
96 low occurrence
97 manifestations
98 mechanical ventilation
99 medical history
100 membrane oxygenation
101 mental confusion
102 mental status
103 method
104 mild disorientation
105 multicenter retrospective observational study
106 multiple regression analysis
107 noninvasive method
108 observational study
109 occurrence
110 older age
111 outbreak
112 outcomes
113 oxygenation
114 pathological conditions
115 patients
116 prevention
117 prevention of confusion
118 primary composite outcome
119 prognosis
120 reaction
121 receptor blockers
122 regression analysis
123 renin-angiotensin system inhibitors
124 retrospective cohort study
125 retrospective observational study
126 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
127 severity
128 sex
129 ship
130 significant contributor
131 status
132 study
133 syndrome coronavirus 2 infection
134 system inhibitors
135 type 1 receptor blocker
136 units
137 use
138 use of ACEIs
139 ventilation
140 worse prognosis
141 worsening
142 schema:name Renin–angiotensin system inhibitors and the severity of coronavirus disease 2019 in Kanagawa, Japan: a retrospective cohort study
143 schema:pagination 1257-1266
144 schema:productId Na5ff3ecf4ef146cfb3c9ea0873269f19
145 Ndc1da884a05945b98e3cbe2db086ba42
146 Ndf71b81771e0454d996d1a71f623889d
147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130238072
148 https://doi.org/10.1038/s41440-020-00535-8
149 schema:sdDatePublished 2022-10-01T06:48
150 schema:sdLicense https://scigraph.springernature.com/explorer/license/
151 schema:sdPublisher N1e09886546974d359172e8bf0458e5b5
152 schema:url https://doi.org/10.1038/s41440-020-00535-8
153 sgo:license sg:explorer/license/
154 sgo:sdDataset articles
155 rdf:type schema:ScholarlyArticle
156 N0ebd59587cdf461b8a375d7b5c7103a2 schema:issueNumber 11
157 rdf:type schema:PublicationIssue
158 N0fb805c5751d4085ab33c9b09e93e0f5 rdf:first sg:person.0650622624.12
159 rdf:rest N59a98d160e3e4924aa9d81382f92e8d1
160 N111b98e9447a4cab95f31270654780a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Severity of Illness Index
162 rdf:type schema:DefinedTerm
163 N1209372c0b014ea7b5744b4a030178a2 rdf:first sg:person.012553225362.46
164 rdf:rest N1d708523db55419aba8a3a0540720a62
165 N19198c3676cf47b1aa16e1c6780b3cf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Age Factors
167 rdf:type schema:DefinedTerm
168 N1b8023fc6aed4433945f54941715f6ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Angiotensin-Converting Enzyme Inhibitors
170 rdf:type schema:DefinedTerm
171 N1d708523db55419aba8a3a0540720a62 rdf:first sg:person.013174322507.05
172 rdf:rest rdf:nil
173 N1e09886546974d359172e8bf0458e5b5 schema:name Springer Nature - SN SciGraph project
174 rdf:type schema:Organization
175 N201bf865719848dcbbca875e81a4014e rdf:first sg:person.0621771644.10
176 rdf:rest Nd4414c9c23c74165ac10e7bbc5910f31
177 N23611836bbc04875b89b122f31ff0f14 rdf:first sg:person.012233340733.22
178 rdf:rest Nb8ddcec6cd8242609e2b0b123b60d56e
179 N26256a23b45d4545b4173543ece392cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Middle Aged
181 rdf:type schema:DefinedTerm
182 N2b8558748dd043c6b6b08aeaad3900c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Pandemics
184 rdf:type schema:DefinedTerm
185 N2c767e72315044e7809aa4578640dfdb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name SARS-CoV-2
187 rdf:type schema:DefinedTerm
188 N3d6b07e0acaa40029cc091ad31446a33 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Pneumonia, Viral
190 rdf:type schema:DefinedTerm
191 N499627bf91f04525a53f7ccdd17564ff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Humans
193 rdf:type schema:DefinedTerm
194 N4ac0d17d2e23417db7c4a3aadd820571 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name Hypertension
196 rdf:type schema:DefinedTerm
197 N59a98d160e3e4924aa9d81382f92e8d1 rdf:first sg:person.0606320560.88
198 rdf:rest N23611836bbc04875b89b122f31ff0f14
199 N5c459b5e75e84ca6b9505f9b5dc21119 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Aged
201 rdf:type schema:DefinedTerm
202 N73f6b706970845789f705b048f53d776 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Confusion
204 rdf:type schema:DefinedTerm
205 N74115fd181da4dc2a8b8d8c03f9d0ca5 rdf:first sg:person.01205511734.72
206 rdf:rest Nd1ffa47571b5475d9787dc0e7fc4b84e
207 Na41ee7a7c72c4e20a5b5785c56d81e9a rdf:first sg:person.013626301733.05
208 rdf:rest Nf66f02e9616d4729a78382dd1ad5f9b0
209 Na5ff3ecf4ef146cfb3c9ea0873269f19 schema:name doi
210 schema:value 10.1038/s41440-020-00535-8
211 rdf:type schema:PropertyValue
212 Naad78e992a4645a58bb88dd884d4b903 rdf:first sg:person.01211314122.49
213 rdf:rest N1209372c0b014ea7b5744b4a030178a2
214 Nac873f658ebd406b8ca9ff6717716ab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Adult
216 rdf:type schema:DefinedTerm
217 Nb6b78749944142a096531b7e6978b268 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name COVID-19
219 rdf:type schema:DefinedTerm
220 Nb8ddcec6cd8242609e2b0b123b60d56e rdf:first sg:person.013030721333.44
221 rdf:rest Na41ee7a7c72c4e20a5b5785c56d81e9a
222 Nbb12074e689e4b8f8d1628adf896e464 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Angiotensin II Type 1 Receptor Blockers
224 rdf:type schema:DefinedTerm
225 Nca0fb2d724734c22aaad8df025ed8c7b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
226 schema:name Retrospective Studies
227 rdf:type schema:DefinedTerm
228 Nce7d2a4fc1674aeabe9dd3888e0a85ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
229 schema:name Female
230 rdf:type schema:DefinedTerm
231 Nd1ffa47571b5475d9787dc0e7fc4b84e rdf:first sg:person.010043017333.72
232 rdf:rest N0fb805c5751d4085ab33c9b09e93e0f5
233 Nd4414c9c23c74165ac10e7bbc5910f31 rdf:first sg:person.01301470144.06
234 rdf:rest Nda1a56ff1e33441ebac53fb83c4a67b9
235 Nd705c64522f94889927ebad34216b7a5 schema:volumeNumber 43
236 rdf:type schema:PublicationVolume
237 Nda1a56ff1e33441ebac53fb83c4a67b9 rdf:first sg:person.016170645072.55
238 rdf:rest N74115fd181da4dc2a8b8d8c03f9d0ca5
239 Ndb7f6a51005f438186a151e68cd179ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
240 schema:name Betacoronavirus
241 rdf:type schema:DefinedTerm
242 Ndc1da884a05945b98e3cbe2db086ba42 schema:name dimensions_id
243 schema:value pub.1130238072
244 rdf:type schema:PropertyValue
245 Ndf71b81771e0454d996d1a71f623889d schema:name pubmed_id
246 schema:value 32820236
247 rdf:type schema:PropertyValue
248 Ne85fc9c4f3e44ec4bc8c274fbdbe1e16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
249 schema:name Aged, 80 and over
250 rdf:type schema:DefinedTerm
251 Ne8fed919f10e491eb972dfceb50d0789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
252 schema:name Coronavirus Infections
253 rdf:type schema:DefinedTerm
254 Nf124b54fd4ab4af589fc5ab3c26eb7b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
255 schema:name Male
256 rdf:type schema:DefinedTerm
257 Nf66f02e9616d4729a78382dd1ad5f9b0 rdf:first sg:person.014423662333.83
258 rdf:rest Naad78e992a4645a58bb88dd884d4b903
259 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
260 schema:name Medical and Health Sciences
261 rdf:type schema:DefinedTerm
262 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
263 schema:name Clinical Sciences
264 rdf:type schema:DefinedTerm
265 sg:journal.1313717 schema:issn 0916-9636
266 1348-4214
267 schema:name Hypertension Research
268 schema:publisher Springer Nature
269 rdf:type schema:Periodical
270 sg:person.010043017333.72 schema:affiliation grid-institutes:grid.268441.d
271 schema:familyName Kirigaya
272 schema:givenName Jin
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010043017333.72
274 rdf:type schema:Person
275 sg:person.01205511734.72 schema:affiliation grid-institutes:grid.268441.d
276 schema:familyName Konishi
277 schema:givenName Masaaki
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205511734.72
279 rdf:type schema:Person
280 sg:person.01211314122.49 schema:affiliation grid-institutes:grid.268441.d
281 schema:familyName Takeuchi
282 schema:givenName Ichiro
283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211314122.49
284 rdf:type schema:Person
285 sg:person.012233340733.22 schema:affiliation grid-institutes:grid.415120.3
286 schema:familyName Shimizu
287 schema:givenName Hiroyuki
288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012233340733.22
289 rdf:type schema:Person
290 sg:person.012553225362.46 schema:affiliation grid-institutes:grid.482503.8
291 schema:familyName Hirano
292 schema:givenName Toshio
293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012553225362.46
294 rdf:type schema:Person
295 sg:person.01301470144.06 schema:affiliation grid-institutes:grid.410796.d
296 schema:familyName Ogawa
297 schema:givenName Hisao
298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301470144.06
299 rdf:type schema:Person
300 sg:person.013030721333.44 schema:affiliation grid-institutes:None
301 schema:familyName Iwabuchi
302 schema:givenName Keisuke
303 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013030721333.44
304 rdf:type schema:Person
305 sg:person.013174322507.05 schema:affiliation grid-institutes:grid.268441.d
306 schema:familyName Tamura
307 schema:givenName Kouichi
308 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013174322507.05
309 rdf:type schema:Person
310 sg:person.013626301733.05 schema:affiliation grid-institutes:None
311 schema:familyName Yamada
312 schema:givenName Yu
313 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013626301733.05
314 rdf:type schema:Person
315 sg:person.014423662333.83 schema:affiliation grid-institutes:None
316 schema:familyName Saka
317 schema:givenName Kenichiro
318 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014423662333.83
319 rdf:type schema:Person
320 sg:person.016170645072.55 schema:affiliation grid-institutes:grid.413045.7
321 schema:familyName Kimura
322 schema:givenName Kazuo
323 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016170645072.55
324 rdf:type schema:Person
325 sg:person.0606320560.88 schema:affiliation grid-institutes:grid.415120.3
326 schema:familyName Tsukahara
327 schema:givenName Kengo
328 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606320560.88
329 rdf:type schema:Person
330 sg:person.0621771644.10 schema:affiliation grid-institutes:grid.413045.7
331 schema:familyName Matsuzawa
332 schema:givenName Yasushi
333 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621771644.10
334 rdf:type schema:Person
335 sg:person.0650622624.12 schema:affiliation grid-institutes:grid.419708.3
336 schema:familyName Fukui
337 schema:givenName Kazuki
338 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650622624.12
339 rdf:type schema:Person
340 sg:pub.10.1007/s00401-010-0674-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039898887
341 https://doi.org/10.1007/s00401-010-0674-1
342 rdf:type schema:CreativeWork
343 sg:pub.10.1007/s11427-020-1643-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124803772
344 https://doi.org/10.1007/s11427-020-1643-8
345 rdf:type schema:CreativeWork
346 sg:pub.10.1038/nature03712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003644008
347 https://doi.org/10.1038/nature03712
348 rdf:type schema:CreativeWork
349 sg:pub.10.1038/ncomms4594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039019363
350 https://doi.org/10.1038/ncomms4594
351 rdf:type schema:CreativeWork
352 sg:pub.10.1038/nm1267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029184047
353 https://doi.org/10.1038/nm1267
354 rdf:type schema:CreativeWork
355 sg:pub.10.1038/nrmicro.2016.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015704176
356 https://doi.org/10.1038/nrmicro.2016.81
357 rdf:type schema:CreativeWork
358 sg:pub.10.1038/s41440-020-0455-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127146647
359 https://doi.org/10.1038/s41440-020-0455-8
360 rdf:type schema:CreativeWork
361 sg:pub.10.1038/s41440-020-0497-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1128551206
362 https://doi.org/10.1038/s41440-020-0497-y
363 rdf:type schema:CreativeWork
364 sg:pub.10.1038/s41440-020-0515-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129781692
365 https://doi.org/10.1038/s41440-020-0515-0
366 rdf:type schema:CreativeWork
367 sg:pub.10.1038/srep19840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052777805
368 https://doi.org/10.1038/srep19840
369 rdf:type schema:CreativeWork
370 sg:pub.10.1186/s13054-020-02882-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1127125001
371 https://doi.org/10.1186/s13054-020-02882-x
372 rdf:type schema:CreativeWork
373 grid-institutes:None schema:alternateName Department of General Medicine, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan
374 Division of Cardiology, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan
375 Division of Cardiology, Yokosuka City Hospital, Yokosuka, Japan
376 schema:name Department of General Medicine, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan
377 Division of Cardiology, Kanagawa Prefectural Ashigarakami Hospital, Ashigara, Japan
378 Division of Cardiology, Yokosuka City Hospital, Yokosuka, Japan
379 rdf:type schema:Organization
380 grid-institutes:grid.268441.d schema:alternateName Department of Emergency Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
381 Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
382 schema:name Department of Emergency Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
383 Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
384 rdf:type schema:Organization
385 grid-institutes:grid.410796.d schema:alternateName National Cerebral and Cardiovascular Center, Suita, Japan
386 schema:name National Cerebral and Cardiovascular Center, Suita, Japan
387 rdf:type schema:Organization
388 grid-institutes:grid.413045.7 schema:alternateName Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
389 schema:name Division of Cardiology, Yokohama City University Medical Center, Yokohama, Japan
390 rdf:type schema:Organization
391 grid-institutes:grid.415120.3 schema:alternateName Department of Clinical Laboratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
392 Division of Cardiology, Fujisawa City Hospital, Fujisawa, Japan
393 schema:name Department of Clinical Laboratory Medicine, Fujisawa City Hospital, Fujisawa, Japan
394 Division of Cardiology, Fujisawa City Hospital, Fujisawa, Japan
395 rdf:type schema:Organization
396 grid-institutes:grid.419708.3 schema:alternateName Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
397 schema:name Department of Cardiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
398 rdf:type schema:Organization
399 grid-institutes:grid.482503.8 schema:alternateName Headquarters, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
400 schema:name Headquarters, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
401 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...