Multiscale mathematical modeling vs. the generalized transfer function approach for aortic pressure estimation: a comparison with invasive data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Andrea Guala, Francesco Tosello, Dario Leone, Luca Sabia, Fabrizio D’Ascenzo, Claudio Moretti, Martina Bollati, Franco Veglio, Luca Ridolfi, Alberto Milan

ABSTRACT

We aimed to evaluate the performance of a mathematical model and currently available non-invasive techniques (generalized transfer function (GTF) method and brachial pressure) in the estimation of aortic pressure. We also aimed to investigate error dependence on brachial pressure errors, aorta-to-brachial pressure changes and demographic/clinical conditions. Sixty-two patients referred for invasive hemodynamic evaluation were consecutively recruited. Simultaneously, the registration of the aortic pressure using a fluid-filled catheter, brachial pressure and radial tonometric waveform was recorded. Accordingly, the GTF device and mathematical model were set. Radial invasive pressure was recorded soon after aortic measurement. The average invasive aortic pressure was 141.3 ± 20.2/76 ± 12.2 mm Hg. The simultaneous brachial pressure was 144 ± 17.8/81.5 ± 11.7 mm Hg. The GTF-based and model-based aortic pressure estimates were 133.1 ± 17.3/82.4 ± 12 and 137 ± 21.6/72.2 ± 16.7 mm Hg, respectively. The Bland-Altman plots showed a marked tendency to pressure overestimation for increasing absolute values, with the exclusion of mathematical model diastolic estimations. The systolic pressure was increased from the aortic to radial locations (7.5 ± 19 mm Hg), while the diastolic pressure was decreased (3.8 ± 9.8 mm Hg). The brachial pressure underestimated the systolic and overestimated diastolic intra-arterial radial pressure. GTF errors were independently correlated with the variability in pulse pressure amplification and with the brachial error. Errors of the mathematical model were related to only demographic and clinical conditions. Neither a multiscale mathematical model nor a generalized transfer function device substantially outperformed the oscillometric brachial pressure in the estimation of aortic pressure. Mathematical modeling should be improved by including further patient-specific conditions, while the variability in pulse pressure amplification may hamper the performance of the GTF method in patients at the risk of coronary artery disease. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41440-018-0159-5

DOI

http://dx.doi.org/10.1038/s41440-018-0159-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110510264

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30531842


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vall d'Hebron Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.430994.3", 
          "name": [
            "Vall d\u2019Hebron Institut de Recerca, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guala", 
        "givenName": "Andrea", 
        "id": "sg:person.0632601022.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632601022.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Internal and Hypertension Division, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tosello", 
        "givenName": "Francesco", 
        "id": "sg:person.0777110722.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777110722.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Internal and Hypertension Division, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leone", 
        "givenName": "Dario", 
        "id": "sg:person.0732541526.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732541526.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Internal and Hypertension Division, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sabia", 
        "givenName": "Luca", 
        "id": "sg:person.01010632345.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010632345.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Hemodynamic Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019Ascenzo", 
        "givenName": "Fabrizio", 
        "id": "sg:person.01345441015.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345441015.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Hemodynamic Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moretti", 
        "givenName": "Claudio", 
        "id": "sg:person.01171701374.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171701374.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Internal and Hypertension Division, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bollati", 
        "givenName": "Martina", 
        "id": "sg:person.011011437777.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011011437777.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Internal and Hypertension Division, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Veglio", 
        "givenName": "Franco", 
        "id": "sg:person.01354314146.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314146.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.4800.c", 
          "name": [
            "DIATI, Politecnico di Torino, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ridolfi", 
        "givenName": "Luca", 
        "id": "sg:person.0742706641.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742706641.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Turin", 
          "id": "https://www.grid.ac/institutes/grid.7605.4", 
          "name": [
            "Internal and Hypertension Division, Department of Medical Sciences, University of Turin, Turin, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milan", 
        "givenName": "Alberto", 
        "id": "sg:person.01211441345.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211441345.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1161/hypertensionaha.109.134379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000458077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.109.134379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000458077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.109.134379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000458077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00857.2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000831112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e3283340a1a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001664639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e3283340a1a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001664639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e3283340a1a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001664639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-014-1185-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002840033", 
          "https://doi.org/10.1007/s11517-014-1185-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2008.03.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005719515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijcard.2012.04.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006149239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.089763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008191667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.089763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008191667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.090068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008219849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.090068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008219849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-017-0871-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009051964", 
          "https://doi.org/10.1007/s10237-017-0871-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-017-0871-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009051964", 
          "https://doi.org/10.1007/s10237-017-0871-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehq024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009303143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2013.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013650005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2013.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013650005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.hyp.21.4.504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013921459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hy0202.098325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017904538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.105445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018593382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.105445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018593382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/eht565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018802273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hyp.0000000000000018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019766687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hyp.0000000000000018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019766687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.105.606962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023683114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehl254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026272416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/eht151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026649630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00821.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027391099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-015-1313-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028364303", 
          "https://doi.org/10.1007/s10439-015-1313-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.089078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037011710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/hypertensionaha.107.089078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037011710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0139211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040646488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-014-1163-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045136653", 
          "https://doi.org/10.1007/s10439-014-1163-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0151523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047829482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0151523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047829482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.medengphy.2012.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051691271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20030294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052156102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/cs20030294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052156102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjhyper.2005.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054727861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehw632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059577335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2011.2177668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061657089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2017.05.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090881805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2017.05.064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090881805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-17765-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100172290", 
          "https://doi.org/10.1038/s41598-017-17765-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "We aimed to evaluate the performance of a mathematical model and currently available non-invasive techniques (generalized transfer function (GTF) method and brachial pressure) in the estimation of aortic pressure. We also aimed to investigate error dependence on brachial pressure errors, aorta-to-brachial pressure changes and demographic/clinical conditions. Sixty-two patients referred for invasive hemodynamic evaluation were consecutively recruited. Simultaneously, the registration of the aortic pressure using a fluid-filled catheter, brachial pressure and radial tonometric waveform was recorded. Accordingly, the GTF device and mathematical model were set. Radial invasive pressure was recorded soon after aortic measurement. The average invasive aortic pressure was 141.3\u2009\u00b1\u200920.2/76\u2009\u00b1\u200912.2\u2009mm\u2009Hg. The simultaneous brachial pressure was 144\u2009\u00b1\u200917.8/81.5\u2009\u00b1\u200911.7\u2009mm\u2009Hg. The GTF-based and model-based aortic pressure estimates were 133.1\u2009\u00b1\u200917.3/82.4\u2009\u00b1\u200912 and 137\u2009\u00b1\u200921.6/72.2\u2009\u00b1\u200916.7\u2009mm\u2009Hg, respectively. The Bland-Altman plots showed a marked tendency to pressure overestimation for increasing absolute values, with the exclusion of mathematical model diastolic estimations. The systolic pressure was increased from the aortic to radial locations (7.5\u2009\u00b1\u200919\u2009mm\u2009Hg), while the diastolic pressure was decreased (3.8\u2009\u00b1\u20099.8\u2009mm\u2009Hg). The brachial pressure underestimated the systolic and overestimated diastolic intra-arterial radial pressure. GTF errors were independently correlated with the variability in pulse pressure amplification and with the brachial error. Errors of the mathematical model were related to only demographic and clinical conditions. Neither a multiscale mathematical model nor a generalized transfer function device substantially outperformed the oscillometric brachial pressure in the estimation of aortic pressure. Mathematical modeling should be improved by including further patient-specific conditions, while the variability in pulse pressure amplification may hamper the performance of the GTF method in patients at the risk of coronary artery disease.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41440-018-0159-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "name": "Multiscale mathematical modeling vs. the generalized transfer function approach for aortic pressure estimation: a comparison with invasive data", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41440-018-0159-5"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9443d790ee374e248d1c7ebbc407cfd66073700d15d2db1c9fc1d45967d7fba"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110510264"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9307690"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30531842"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41440-018-0159-5", 
      "https://app.dimensions.ai/details/publication/pub.1110510264"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56182_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41440-018-0159-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0159-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0159-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0159-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0159-5'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41440-018-0159-5 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N93ce40b299b74cba8f0b2eaa3386fa2e
4 schema:citation sg:pub.10.1007/s10237-017-0871-0
5 sg:pub.10.1007/s10439-014-1163-9
6 sg:pub.10.1007/s10439-015-1313-8
7 sg:pub.10.1007/s11517-014-1185-3
8 sg:pub.10.1038/s41598-017-17765-5
9 https://doi.org/10.1016/j.amjhyper.2005.08.007
10 https://doi.org/10.1016/j.ijcard.2012.04.155
11 https://doi.org/10.1016/j.jacc.2008.03.031
12 https://doi.org/10.1016/j.jacc.2017.05.064
13 https://doi.org/10.1016/j.jbiomech.2013.11.009
14 https://doi.org/10.1016/j.medengphy.2012.07.011
15 https://doi.org/10.1042/cs20030294
16 https://doi.org/10.1093/eurheartj/ehl254
17 https://doi.org/10.1093/eurheartj/ehq024
18 https://doi.org/10.1093/eurheartj/eht151
19 https://doi.org/10.1093/eurheartj/eht565
20 https://doi.org/10.1093/eurheartj/ehw632
21 https://doi.org/10.1097/hjh.0b013e3283340a1a
22 https://doi.org/10.1109/titb.2011.2177668
23 https://doi.org/10.1152/ajpheart.00821.2010
24 https://doi.org/10.1152/ajpheart.00857.2014
25 https://doi.org/10.1161/01.hyp.21.4.504
26 https://doi.org/10.1161/circulationaha.105.606962
27 https://doi.org/10.1161/hy0202.098325
28 https://doi.org/10.1161/hyp.0000000000000018
29 https://doi.org/10.1161/hypertensionaha.107.089078
30 https://doi.org/10.1161/hypertensionaha.107.089763
31 https://doi.org/10.1161/hypertensionaha.107.090068
32 https://doi.org/10.1161/hypertensionaha.107.105445
33 https://doi.org/10.1161/hypertensionaha.109.134379
34 https://doi.org/10.1371/journal.pone.0139211
35 https://doi.org/10.1371/journal.pone.0151523
36 schema:datePublished 2019-05
37 schema:datePublishedReg 2019-05-01
38 schema:description We aimed to evaluate the performance of a mathematical model and currently available non-invasive techniques (generalized transfer function (GTF) method and brachial pressure) in the estimation of aortic pressure. We also aimed to investigate error dependence on brachial pressure errors, aorta-to-brachial pressure changes and demographic/clinical conditions. Sixty-two patients referred for invasive hemodynamic evaluation were consecutively recruited. Simultaneously, the registration of the aortic pressure using a fluid-filled catheter, brachial pressure and radial tonometric waveform was recorded. Accordingly, the GTF device and mathematical model were set. Radial invasive pressure was recorded soon after aortic measurement. The average invasive aortic pressure was 141.3 ± 20.2/76 ± 12.2 mm Hg. The simultaneous brachial pressure was 144 ± 17.8/81.5 ± 11.7 mm Hg. The GTF-based and model-based aortic pressure estimates were 133.1 ± 17.3/82.4 ± 12 and 137 ± 21.6/72.2 ± 16.7 mm Hg, respectively. The Bland-Altman plots showed a marked tendency to pressure overestimation for increasing absolute values, with the exclusion of mathematical model diastolic estimations. The systolic pressure was increased from the aortic to radial locations (7.5 ± 19 mm Hg), while the diastolic pressure was decreased (3.8 ± 9.8 mm Hg). The brachial pressure underestimated the systolic and overestimated diastolic intra-arterial radial pressure. GTF errors were independently correlated with the variability in pulse pressure amplification and with the brachial error. Errors of the mathematical model were related to only demographic and clinical conditions. Neither a multiscale mathematical model nor a generalized transfer function device substantially outperformed the oscillometric brachial pressure in the estimation of aortic pressure. Mathematical modeling should be improved by including further patient-specific conditions, while the variability in pulse pressure amplification may hamper the performance of the GTF method in patients at the risk of coronary artery disease.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N1a64917cdf4f4d3097a42c56fd460a33
43 N2048ed0d351c4f8e83a18b3fd2a3ebd2
44 sg:journal.1313717
45 schema:name Multiscale mathematical modeling vs. the generalized transfer function approach for aortic pressure estimation: a comparison with invasive data
46 schema:pagination 1-9
47 schema:productId N9ca498666cbc451c85496272d384c6db
48 Nb4996fa7c3ea4566b06adfe8829e20c6
49 Nd3b9e03f29be42b98a5896223145bfe0
50 Ne0c1dd93ce63414bbfe02df707e40323
51 Nff262c670fa84b1f94a9aa555cab9ab9
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110510264
53 https://doi.org/10.1038/s41440-018-0159-5
54 schema:sdDatePublished 2019-04-15T09:21
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nb063236722924351abf79933627e09db
57 schema:url https://www.nature.com/articles/s41440-018-0159-5
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N04fdec3a71c54cbb9c275b0495aa83ac rdf:first sg:person.0777110722.40
62 rdf:rest N87cd4c35182e4e7481fe27c0c1a12aa5
63 N19dd67ce90d648c096077f939a8bb251 rdf:first sg:person.01010632345.09
64 rdf:rest Nd418f48c750c4ecc82c72b7dcbf58ba1
65 N1a64917cdf4f4d3097a42c56fd460a33 schema:issueNumber 5
66 rdf:type schema:PublicationIssue
67 N2048ed0d351c4f8e83a18b3fd2a3ebd2 schema:volumeNumber 42
68 rdf:type schema:PublicationVolume
69 N2a3b388b978947e69f0e8d849c9a171a rdf:first sg:person.01354314146.15
70 rdf:rest N636c5cc9b7c74b2cb2964ccccf98b5eb
71 N636c5cc9b7c74b2cb2964ccccf98b5eb rdf:first sg:person.0742706641.61
72 rdf:rest Nc0f485b377a6436d88fe19c4b4704e00
73 N641176974c26449d96a9e7586136ef6a rdf:first sg:person.011011437777.01
74 rdf:rest N2a3b388b978947e69f0e8d849c9a171a
75 N87cd4c35182e4e7481fe27c0c1a12aa5 rdf:first sg:person.0732541526.19
76 rdf:rest N19dd67ce90d648c096077f939a8bb251
77 N8e34e8f6d8e140f6bb7b7efe3bc8ba4f rdf:first sg:person.01171701374.84
78 rdf:rest N641176974c26449d96a9e7586136ef6a
79 N93ce40b299b74cba8f0b2eaa3386fa2e rdf:first sg:person.0632601022.04
80 rdf:rest N04fdec3a71c54cbb9c275b0495aa83ac
81 N9ca498666cbc451c85496272d384c6db schema:name dimensions_id
82 schema:value pub.1110510264
83 rdf:type schema:PropertyValue
84 Nb063236722924351abf79933627e09db schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nb4996fa7c3ea4566b06adfe8829e20c6 schema:name readcube_id
87 schema:value d9443d790ee374e248d1c7ebbc407cfd66073700d15d2db1c9fc1d45967d7fba
88 rdf:type schema:PropertyValue
89 Nc0f485b377a6436d88fe19c4b4704e00 rdf:first sg:person.01211441345.36
90 rdf:rest rdf:nil
91 Nd3b9e03f29be42b98a5896223145bfe0 schema:name pubmed_id
92 schema:value 30531842
93 rdf:type schema:PropertyValue
94 Nd418f48c750c4ecc82c72b7dcbf58ba1 rdf:first sg:person.01345441015.46
95 rdf:rest N8e34e8f6d8e140f6bb7b7efe3bc8ba4f
96 Ne0c1dd93ce63414bbfe02df707e40323 schema:name nlm_unique_id
97 schema:value 9307690
98 rdf:type schema:PropertyValue
99 Nff262c670fa84b1f94a9aa555cab9ab9 schema:name doi
100 schema:value 10.1038/s41440-018-0159-5
101 rdf:type schema:PropertyValue
102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
103 schema:name Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
106 schema:name Biomedical Engineering
107 rdf:type schema:DefinedTerm
108 sg:journal.1313717 schema:issn 0916-9636
109 1348-4214
110 schema:name Hypertension Research
111 rdf:type schema:Periodical
112 sg:person.01010632345.09 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
113 schema:familyName Sabia
114 schema:givenName Luca
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010632345.09
116 rdf:type schema:Person
117 sg:person.011011437777.01 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
118 schema:familyName Bollati
119 schema:givenName Martina
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011011437777.01
121 rdf:type schema:Person
122 sg:person.01171701374.84 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
123 schema:familyName Moretti
124 schema:givenName Claudio
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171701374.84
126 rdf:type schema:Person
127 sg:person.01211441345.36 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
128 schema:familyName Milan
129 schema:givenName Alberto
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211441345.36
131 rdf:type schema:Person
132 sg:person.01345441015.46 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
133 schema:familyName D’Ascenzo
134 schema:givenName Fabrizio
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345441015.46
136 rdf:type schema:Person
137 sg:person.01354314146.15 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
138 schema:familyName Veglio
139 schema:givenName Franco
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314146.15
141 rdf:type schema:Person
142 sg:person.0632601022.04 schema:affiliation https://www.grid.ac/institutes/grid.430994.3
143 schema:familyName Guala
144 schema:givenName Andrea
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632601022.04
146 rdf:type schema:Person
147 sg:person.0732541526.19 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
148 schema:familyName Leone
149 schema:givenName Dario
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732541526.19
151 rdf:type schema:Person
152 sg:person.0742706641.61 schema:affiliation https://www.grid.ac/institutes/grid.4800.c
153 schema:familyName Ridolfi
154 schema:givenName Luca
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742706641.61
156 rdf:type schema:Person
157 sg:person.0777110722.40 schema:affiliation https://www.grid.ac/institutes/grid.7605.4
158 schema:familyName Tosello
159 schema:givenName Francesco
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777110722.40
161 rdf:type schema:Person
162 sg:pub.10.1007/s10237-017-0871-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009051964
163 https://doi.org/10.1007/s10237-017-0871-0
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s10439-014-1163-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045136653
166 https://doi.org/10.1007/s10439-014-1163-9
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s10439-015-1313-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028364303
169 https://doi.org/10.1007/s10439-015-1313-8
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11517-014-1185-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002840033
172 https://doi.org/10.1007/s11517-014-1185-3
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/s41598-017-17765-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100172290
175 https://doi.org/10.1038/s41598-017-17765-5
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.amjhyper.2005.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054727861
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.ijcard.2012.04.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006149239
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jacc.2008.03.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005719515
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.jacc.2017.05.064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090881805
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.jbiomech.2013.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013650005
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.medengphy.2012.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051691271
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1042/cs20030294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052156102
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/eurheartj/ehl254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026272416
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/eurheartj/ehq024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009303143
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/eurheartj/eht151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026649630
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/eurheartj/eht565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018802273
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/eurheartj/ehw632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059577335
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1097/hjh.0b013e3283340a1a schema:sameAs https://app.dimensions.ai/details/publication/pub.1001664639
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/titb.2011.2177668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061657089
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1152/ajpheart.00821.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027391099
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1152/ajpheart.00857.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000831112
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1161/01.hyp.21.4.504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013921459
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1161/circulationaha.105.606962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023683114
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1161/hy0202.098325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017904538
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1161/hyp.0000000000000018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019766687
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1161/hypertensionaha.107.089078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037011710
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1161/hypertensionaha.107.089763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008191667
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1161/hypertensionaha.107.090068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008219849
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1161/hypertensionaha.107.105445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018593382
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1161/hypertensionaha.109.134379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000458077
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1371/journal.pone.0139211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040646488
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1371/journal.pone.0151523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047829482
230 rdf:type schema:CreativeWork
231 https://www.grid.ac/institutes/grid.430994.3 schema:alternateName Vall d'Hebron Research Institute
232 schema:name Vall d’Hebron Institut de Recerca, Barcelona, Spain
233 rdf:type schema:Organization
234 https://www.grid.ac/institutes/grid.4800.c schema:alternateName Polytechnic University of Turin
235 schema:name DIATI, Politecnico di Torino, Turin, Italy
236 rdf:type schema:Organization
237 https://www.grid.ac/institutes/grid.7605.4 schema:alternateName University of Turin
238 schema:name Hemodynamic Laboratory, Department of Medical Sciences, University of Turin, Turin, Italy
239 Internal and Hypertension Division, Department of Medical Sciences, University of Turin, Turin, Italy
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...