Optimal schedule of home blood-pressure measurements for the diagnosis of hypertension View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Moo-Yong Rhee, Jang Young Kim, Ji-Hyun Kim, June Namgung, Sung Yun Lee, Deok-Kyu Cho, Tae-Young Choi, Seok Yeon Kim

ABSTRACT

Various home blood-pressure (HBP) measurement schedules were compared to determine the optimal schedule of HBP measurement for the diagnosis of hypertension. Out of 319 individuals who were suspected of having hypertension based on office BP measurements and who did not take antihypertensive drugs, 157 individuals who completed 42 HBP measurements over 7 days and who had a valid 24-h ambulatory blood pressure (ABP) measurement were included in this analysis. We evaluated five HBP measurement schedules to determine the optimal HBP measurement schedule for the diagnosis of hypertension. The cumulatively averaged HBP from 5 to 6 measurement days showed a Pearson correlation coefficient of >0.990 compared to HBP averaged for 6 or 7 days depending on the method. The intraclass correlation coefficient of the cumulatively averaged HBP measurements compared with the 24-h ABP measurement was excellent (≥0.75) from the average of three measurement days and increased steadily with increasing averaged days of HBP measurements. Compared with a diagnosis using a 24-h ABP measurement, the diagnostic sensitivity, specificity, and positive and negative predictive values of HBP measurements were not different among the five methods. The diagnostic agreement of cumulatively averaged HBP measurements was nearly perfect (kappa ≥ 0.9) from the average of five measurement days compared with a diagnosis based on HBP measurements averaged for 6 or 7 days and diagnosis based on averaged HBP measurements of previous days. We suggest obtaining HBP measurements over 5 days or more, in the morning and evening, taking two or more measurements per occasion, and averaging all of the readings as the optimal schedule of HBP measurement for the diagnosis of hypertension. More... »

PAGES

738-747

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41440-018-0069-6

DOI

http://dx.doi.org/10.1038/s41440-018-0069-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105326310

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29977083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dongguk University Ilsan Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470090.a", 
          "name": [
            "Cardiovascular Center, Dongguk University Ilsan Hospital, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rhee", 
        "givenName": "Moo-Yong", 
        "id": "sg:person.01134074521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134074521.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wonju Severance Christian Hospital", 
          "id": "https://www.grid.ac/institutes/grid.464718.8", 
          "name": [
            "Division of Cardiology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jang Young", 
        "id": "sg:person.01204050075.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204050075.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dongguk University Ilsan Hospital", 
          "id": "https://www.grid.ac/institutes/grid.470090.a", 
          "name": [
            "Cardiovascular Center, Dongguk University Ilsan Hospital, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Ji-Hyun", 
        "id": "sg:person.01133164267.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133164267.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inje University Ilsan Paik Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411633.2", 
          "name": [
            "Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Namgung", 
        "givenName": "June", 
        "id": "sg:person.01356217236.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356217236.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Inje University Ilsan Paik Hospital", 
          "id": "https://www.grid.ac/institutes/grid.411633.2", 
          "name": [
            "Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Sung Yun", 
        "id": "sg:person.01056225003.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056225003.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Myongji Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416355.0", 
          "name": [
            "Division of Cardiology, Myongji Hospital, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Deok-Kyu", 
        "id": "sg:person.0640764251.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640764251.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Myongji Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416355.0", 
          "name": [
            "Division of Cardiology, Myongji Hospital, Goyang, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Tae-Young", 
        "id": "sg:person.012401045737.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401045737.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Seoul Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.415520.7", 
          "name": [
            "Department of Cardiology, Seoul Medical Center, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seok Yeon", 
        "id": "sg:person.01235154754.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235154754.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/s40885-014-0012-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001535023", 
          "https://doi.org/10.1186/s40885-014-0012-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40885-014-0012-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001535023", 
          "https://doi.org/10.1186/s40885-014-0012-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-199816060-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008954901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-199816060-00002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008954901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2016.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009323107", 
          "https://doi.org/10.1038/hr.2016.99"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jhh.2009.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014572797", 
          "https://doi.org/10.1038/jhh.2009.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e328332fa5e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017302011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e328332fa5e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017302011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e328332fa5e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017302011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0b013e328332fa5e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017302011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.hjh.0000431740.32696.cc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024047626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.hjh.0000431740.32696.cc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024047626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.hjh.0000431740.32696.cc", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024047626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cjca.2015.02.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025240026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-200305000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031406025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00004872-200305000-00001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031406025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10641960701815911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036115804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2013.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041803518", 
          "https://doi.org/10.1038/hr.2013.80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2013.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041803518", 
          "https://doi.org/10.1038/hr.2013.80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hr.2013.80", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041803518", 
          "https://doi.org/10.1038/hr.2013.80"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cjca.2016.02.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042765964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mbp.0b013e32835ebb18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043725509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/mbp.0b013e32835ebb18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043725509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.hjh.0000239289.87141.b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046098811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.hjh.0000239289.87141.b6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046098811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0000000000000509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049803922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0000000000000509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049803922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0000000000000489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050318406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/hjh.0000000000000489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050318406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0895-7061(01)02277-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052403809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajh/hpu216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059382518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7326/m15-1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073742765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ajh/hpx115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087309762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2017.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092667785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2017.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092667785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471445428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471445428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "Various home blood-pressure (HBP) measurement schedules were compared to determine the optimal schedule of HBP measurement for the diagnosis of hypertension. Out of 319 individuals who were suspected of having hypertension based on office BP measurements and who did not take antihypertensive drugs, 157 individuals who completed 42 HBP measurements over 7 days and who had a valid 24-h ambulatory blood pressure (ABP) measurement were included in this analysis. We evaluated five HBP measurement schedules to determine the optimal HBP measurement schedule for the diagnosis of hypertension. The cumulatively averaged HBP from 5 to 6 measurement days showed a Pearson correlation coefficient of >0.990 compared to HBP averaged for 6 or 7 days depending on the method. The intraclass correlation coefficient of the cumulatively averaged HBP measurements compared with the 24-h ABP measurement was excellent (\u22650.75) from the average of three measurement days and increased steadily with increasing averaged days of HBP measurements. Compared with a diagnosis using a 24-h ABP measurement, the diagnostic sensitivity, specificity, and positive and negative predictive values of HBP measurements were not different among the five methods. The diagnostic agreement of cumulatively averaged HBP measurements was nearly perfect (kappa\u2009\u2265\u20090.9) from the average of five measurement days compared with a diagnosis based on HBP measurements averaged for 6 or 7 days and diagnosis based on averaged HBP measurements of previous days. We suggest obtaining HBP measurements over 5 days or more, in the morning and evening, taking two or more measurements per occasion, and averaging all of the readings as the optimal schedule of HBP measurement for the diagnosis of hypertension.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41440-018-0069-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1313717", 
        "issn": [
          "0916-9636", 
          "1348-4214"
        ], 
        "name": "Hypertension Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "name": "Optimal schedule of home blood-pressure measurements for the diagnosis of hypertension", 
    "pagination": "738-747", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c05ac9f9114f74bb3c0e8b221e3705237f1629b67a1ff563896c129a0c96e9b7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29977083"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9307690"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41440-018-0069-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105326310"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41440-018-0069-6", 
      "https://app.dimensions.ai/details/publication/pub.1105326310"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000566.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41440-018-0069-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0069-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0069-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0069-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41440-018-0069-6'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      50 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41440-018-0069-6 schema:about anzsrc-for:11
2 anzsrc-for:1102
3 schema:author Nd8dd10823b884d0e81a764e78e6feedd
4 schema:citation sg:pub.10.1038/hr.2013.80
5 sg:pub.10.1038/hr.2016.99
6 sg:pub.10.1038/jhh.2009.54
7 sg:pub.10.1186/s40885-014-0012-3
8 https://doi.org/10.1002/0471445428
9 https://doi.org/10.1016/j.cjca.2015.02.016
10 https://doi.org/10.1016/j.cjca.2016.02.066
11 https://doi.org/10.1016/j.jacc.2017.11.006
12 https://doi.org/10.1016/s0895-7061(01)02277-4
13 https://doi.org/10.1080/10641960701815911
14 https://doi.org/10.1093/ajh/hpu216
15 https://doi.org/10.1093/ajh/hpx115
16 https://doi.org/10.1097/00004872-199816060-00002
17 https://doi.org/10.1097/00004872-200305000-00001
18 https://doi.org/10.1097/01.hjh.0000239289.87141.b6
19 https://doi.org/10.1097/01.hjh.0000431740.32696.cc
20 https://doi.org/10.1097/hjh.0000000000000489
21 https://doi.org/10.1097/hjh.0000000000000509
22 https://doi.org/10.1097/hjh.0b013e328332fa5e
23 https://doi.org/10.1097/mbp.0b013e32835ebb18
24 https://doi.org/10.7326/m15-1270
25 schema:datePublished 2018-09
26 schema:datePublishedReg 2018-09-01
27 schema:description Various home blood-pressure (HBP) measurement schedules were compared to determine the optimal schedule of HBP measurement for the diagnosis of hypertension. Out of 319 individuals who were suspected of having hypertension based on office BP measurements and who did not take antihypertensive drugs, 157 individuals who completed 42 HBP measurements over 7 days and who had a valid 24-h ambulatory blood pressure (ABP) measurement were included in this analysis. We evaluated five HBP measurement schedules to determine the optimal HBP measurement schedule for the diagnosis of hypertension. The cumulatively averaged HBP from 5 to 6 measurement days showed a Pearson correlation coefficient of >0.990 compared to HBP averaged for 6 or 7 days depending on the method. The intraclass correlation coefficient of the cumulatively averaged HBP measurements compared with the 24-h ABP measurement was excellent (≥0.75) from the average of three measurement days and increased steadily with increasing averaged days of HBP measurements. Compared with a diagnosis using a 24-h ABP measurement, the diagnostic sensitivity, specificity, and positive and negative predictive values of HBP measurements were not different among the five methods. The diagnostic agreement of cumulatively averaged HBP measurements was nearly perfect (kappa ≥ 0.9) from the average of five measurement days compared with a diagnosis based on HBP measurements averaged for 6 or 7 days and diagnosis based on averaged HBP measurements of previous days. We suggest obtaining HBP measurements over 5 days or more, in the morning and evening, taking two or more measurements per occasion, and averaging all of the readings as the optimal schedule of HBP measurement for the diagnosis of hypertension.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N1a3e70accdc241448ff2f25c3865546c
32 Nfb0837ed39a84186901971601926a1e4
33 sg:journal.1313717
34 schema:name Optimal schedule of home blood-pressure measurements for the diagnosis of hypertension
35 schema:pagination 738-747
36 schema:productId N19a49a1df7954bbf9e73bf32f74adba4
37 N24844205cedf4a2d9e4c0a6c1282b922
38 N97972ba757a74b20ae4034ebbb7acd2b
39 Nba9925ecb4344ef194b80c406819b927
40 Nece066086ed64453bba9914522143943
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105326310
42 https://doi.org/10.1038/s41440-018-0069-6
43 schema:sdDatePublished 2019-04-11T02:23
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Ndc334d50bcbc4b9f9ee768153622af02
46 schema:url https://www.nature.com/articles/s41440-018-0069-6
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N03d41a51430f4c51ac6ec43f4be4c554 rdf:first sg:person.01056225003.08
51 rdf:rest N5fe2c63fc0f64d0d9a09e90e312e87ab
52 N119567783159431d834b67fccb4f4921 rdf:first sg:person.01204050075.05
53 rdf:rest Nd3bd5c7af47040698d3dc38721d23173
54 N19a49a1df7954bbf9e73bf32f74adba4 schema:name dimensions_id
55 schema:value pub.1105326310
56 rdf:type schema:PropertyValue
57 N1a3e70accdc241448ff2f25c3865546c schema:volumeNumber 41
58 rdf:type schema:PublicationVolume
59 N24844205cedf4a2d9e4c0a6c1282b922 schema:name readcube_id
60 schema:value c05ac9f9114f74bb3c0e8b221e3705237f1629b67a1ff563896c129a0c96e9b7
61 rdf:type schema:PropertyValue
62 N4ce8fa1bfc924d5c8575992c52c48759 rdf:first sg:person.01356217236.21
63 rdf:rest N03d41a51430f4c51ac6ec43f4be4c554
64 N5fe2c63fc0f64d0d9a09e90e312e87ab rdf:first sg:person.0640764251.39
65 rdf:rest Nbeaf9bce854a450fa147f4919504ea8c
66 N97972ba757a74b20ae4034ebbb7acd2b schema:name pubmed_id
67 schema:value 29977083
68 rdf:type schema:PropertyValue
69 Nba9925ecb4344ef194b80c406819b927 schema:name nlm_unique_id
70 schema:value 9307690
71 rdf:type schema:PropertyValue
72 Nbeaf9bce854a450fa147f4919504ea8c rdf:first sg:person.012401045737.03
73 rdf:rest Ncda35404646a45a8ab803f7ec53e46d8
74 Ncda35404646a45a8ab803f7ec53e46d8 rdf:first sg:person.01235154754.54
75 rdf:rest rdf:nil
76 Nd3bd5c7af47040698d3dc38721d23173 rdf:first sg:person.01133164267.36
77 rdf:rest N4ce8fa1bfc924d5c8575992c52c48759
78 Nd8dd10823b884d0e81a764e78e6feedd rdf:first sg:person.01134074521.86
79 rdf:rest N119567783159431d834b67fccb4f4921
80 Ndc334d50bcbc4b9f9ee768153622af02 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nece066086ed64453bba9914522143943 schema:name doi
83 schema:value 10.1038/s41440-018-0069-6
84 rdf:type schema:PropertyValue
85 Nfb0837ed39a84186901971601926a1e4 schema:issueNumber 9
86 rdf:type schema:PublicationIssue
87 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
88 schema:name Medical and Health Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
91 schema:name Cardiorespiratory Medicine and Haematology
92 rdf:type schema:DefinedTerm
93 sg:journal.1313717 schema:issn 0916-9636
94 1348-4214
95 schema:name Hypertension Research
96 rdf:type schema:Periodical
97 sg:person.01056225003.08 schema:affiliation https://www.grid.ac/institutes/grid.411633.2
98 schema:familyName Lee
99 schema:givenName Sung Yun
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056225003.08
101 rdf:type schema:Person
102 sg:person.01133164267.36 schema:affiliation https://www.grid.ac/institutes/grid.470090.a
103 schema:familyName Kim
104 schema:givenName Ji-Hyun
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133164267.36
106 rdf:type schema:Person
107 sg:person.01134074521.86 schema:affiliation https://www.grid.ac/institutes/grid.470090.a
108 schema:familyName Rhee
109 schema:givenName Moo-Yong
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134074521.86
111 rdf:type schema:Person
112 sg:person.01204050075.05 schema:affiliation https://www.grid.ac/institutes/grid.464718.8
113 schema:familyName Kim
114 schema:givenName Jang Young
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204050075.05
116 rdf:type schema:Person
117 sg:person.01235154754.54 schema:affiliation https://www.grid.ac/institutes/grid.415520.7
118 schema:familyName Kim
119 schema:givenName Seok Yeon
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235154754.54
121 rdf:type schema:Person
122 sg:person.012401045737.03 schema:affiliation https://www.grid.ac/institutes/grid.416355.0
123 schema:familyName Choi
124 schema:givenName Tae-Young
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401045737.03
126 rdf:type schema:Person
127 sg:person.01356217236.21 schema:affiliation https://www.grid.ac/institutes/grid.411633.2
128 schema:familyName Namgung
129 schema:givenName June
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356217236.21
131 rdf:type schema:Person
132 sg:person.0640764251.39 schema:affiliation https://www.grid.ac/institutes/grid.416355.0
133 schema:familyName Cho
134 schema:givenName Deok-Kyu
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640764251.39
136 rdf:type schema:Person
137 sg:pub.10.1038/hr.2013.80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041803518
138 https://doi.org/10.1038/hr.2013.80
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/hr.2016.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009323107
141 https://doi.org/10.1038/hr.2016.99
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/jhh.2009.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014572797
144 https://doi.org/10.1038/jhh.2009.54
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/s40885-014-0012-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001535023
147 https://doi.org/10.1186/s40885-014-0012-3
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/0471445428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661221
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.cjca.2015.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025240026
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.cjca.2016.02.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042765964
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jacc.2017.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092667785
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/s0895-7061(01)02277-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052403809
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1080/10641960701815911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036115804
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/ajh/hpu216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059382518
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/ajh/hpx115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087309762
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1097/00004872-199816060-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008954901
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1097/00004872-200305000-00001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031406025
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1097/01.hjh.0000239289.87141.b6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046098811
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1097/01.hjh.0000431740.32696.cc schema:sameAs https://app.dimensions.ai/details/publication/pub.1024047626
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1097/hjh.0000000000000489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050318406
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1097/hjh.0000000000000509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049803922
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1097/hjh.0b013e328332fa5e schema:sameAs https://app.dimensions.ai/details/publication/pub.1017302011
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1097/mbp.0b013e32835ebb18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043725509
180 rdf:type schema:CreativeWork
181 https://doi.org/10.7326/m15-1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073742765
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.411633.2 schema:alternateName Inje University Ilsan Paik Hospital
184 schema:name Division of Cardiology, Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
185 rdf:type schema:Organization
186 https://www.grid.ac/institutes/grid.415520.7 schema:alternateName Seoul Medical Center
187 schema:name Department of Cardiology, Seoul Medical Center, Seoul, Korea
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.416355.0 schema:alternateName Myongji Hospital
190 schema:name Division of Cardiology, Myongji Hospital, Goyang, Korea
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.464718.8 schema:alternateName Wonju Severance Christian Hospital
193 schema:name Division of Cardiology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju Severance Christian Hospital, Wonju, Korea
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.470090.a schema:alternateName Dongguk University Ilsan Hospital
196 schema:name Cardiovascular Center, Dongguk University Ilsan Hospital, Goyang, Korea
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...