3D point cloud data to quantitatively characterize size and shape of shrub crops View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Yu Jiang, Changying Li, Fumiomi Takeda, Elizabeth A. Kramer, Hamid Ashrafi, Jamal Hunter

ABSTRACT

Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size, and shape descriptors (path curve λ and five shape indices). One-dimensional traits (height, width, and crown size) had high correlations (R 2 = 0.88-0.95) between proposed method and manual measurements, whereas bush volume showed relatively lower correlations (R 2 = 0.78-0.85). These correlations suggested that the present approach was accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume. Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape. The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a visualization tool could be generated using crown size and path curve λ, which showed great potential of determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for mechanical harvesting) and farm management. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9

DOI

http://dx.doi.org/10.1038/s41438-019-0123-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113162109

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30962936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Changying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Appalachian Fruit Research Station, United States Department of Agriculture-Agricultural Research Service, 25430, Kearneysville, WV, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeda", 
        "givenName": "Fumiomi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Agricultural and Applied Economics, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramer", 
        "givenName": "Elizabeth A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Horticultural Science, North Carolina State University, 27695, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashrafi", 
        "givenName": "Hamid", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Entomology, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "Jamal", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/s141120078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002490891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.postharvbio.2009.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002895747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-011-0556-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003298165", 
          "https://doi.org/10.1007/s11947-011-0556-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2011.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008114498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008114498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2014.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008734033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02228852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011781346", 
          "https://doi.org/10.1007/bf02228852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2009.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014572748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15538362.2011.619348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015349807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2013.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018480744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-007-0107-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021569711", 
          "https://doi.org/10.1007/s11263-007-0107-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2013.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022724478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erw176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scienta.2013.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025038764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1999.0832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025309926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70404213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031551544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032029823", 
          "https://doi.org/10.1186/1471-2105-12-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032029823", 
          "https://doi.org/10.1186/1471-2105-12-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11284-005-0090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032735147", 
          "https://doi.org/10.1007/s11284-005-0090-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/s11284-005-0090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032735147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033006364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0060522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034840135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/f7060127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037348384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2016.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037898208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/1856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040461839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1613593114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043835805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/fp16167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046702324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2014.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048297110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051612769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051612769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2008.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052961296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2012.2200990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.25435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064893414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.5794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064905990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/hortsci11323-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068967925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5376/pgt.2010.01.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072799089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9020111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074238723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.00373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084434325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/agronomy7020033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085133581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.00915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085721351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00103624.2017.1299169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085774827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2017.03.0026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092111415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scienta.2017.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092225539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.4088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093136906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9121250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093167841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781482298000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109619223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/horttech.18.1.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110655090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/horttech.23.4.430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110655787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/jashs.134.1.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111867507"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size, and shape descriptors (path curve \u03bb and five shape indices). One-dimensional traits (height, width, and crown size) had high correlations (R 2\u2009=\u20090.88-0.95) between proposed method and manual measurements, whereas bush volume showed relatively lower correlations (R 2\u2009=\u20090.78-0.85). These correlations suggested that the present approach was accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume. Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape. The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a visualization tool could be generated using crown size and path curve \u03bb, which showed great potential of determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for mechanical harvesting) and farm management.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41438-019-0123-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3951614", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051681", 
        "issn": [
          "2052-7276"
        ], 
        "name": "Horticulture Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "3D point cloud data to quantitatively characterize size and shape of shrub crops", 
    "pagination": "43", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41438-019-0123-9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f61d11d83d5acda0e5b6757eab4a2e85e97047d6c3a55b42bf8f7b0d0d2347ff"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113162109"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101655540"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30962936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41438-019-0123-9", 
      "https://app.dimensions.ai/details/publication/pub.1113162109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56176_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41438-019-0123-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41438-019-0123-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6f50a9a95bdf4a4581ce8b6b494ed1a3
4 schema:citation sg:pub.10.1007/bf02228852
5 sg:pub.10.1007/s11263-007-0107-3
6 sg:pub.10.1007/s11284-005-0090-5
7 sg:pub.10.1007/s11947-011-0556-0
8 sg:pub.10.1038/s41438-018-0097-z
9 sg:pub.10.1186/1471-2105-12-148
10 https://doi.org/10.1006/cviu.1999.0832
11 https://doi.org/10.1007/s11284-005-0090-5
12 https://doi.org/10.1016/j.agrformet.2009.04.008
13 https://doi.org/10.1016/j.biosystemseng.2008.10.009
14 https://doi.org/10.1016/j.biosystemseng.2014.01.008
15 https://doi.org/10.1016/j.compag.2011.09.007
16 https://doi.org/10.1016/j.compag.2013.12.001
17 https://doi.org/10.1016/j.compag.2014.09.021
18 https://doi.org/10.1016/j.compag.2014.10.003
19 https://doi.org/10.1016/j.compag.2016.09.014
20 https://doi.org/10.1016/j.envsoft.2016.04.025
21 https://doi.org/10.1016/j.pbi.2016.04.005
22 https://doi.org/10.1016/j.pbi.2017.05.006
23 https://doi.org/10.1016/j.postharvbio.2009.05.001
24 https://doi.org/10.1016/j.scienta.2013.10.028
25 https://doi.org/10.1016/j.scienta.2017.10.006
26 https://doi.org/10.1016/j.tplants.2013.09.008
27 https://doi.org/10.1071/fp16167
28 https://doi.org/10.1073/pnas.1613593114
29 https://doi.org/10.1080/00103624.2017.1299169
30 https://doi.org/10.1080/15538362.2011.619348
31 https://doi.org/10.1093/jxb/erw176
32 https://doi.org/10.1109/tro.2012.2200990
33 https://doi.org/10.1201/9781482298000
34 https://doi.org/10.13031/2013.25435
35 https://doi.org/10.13031/2013.5794
36 https://doi.org/10.1371/journal.pone.0060522
37 https://doi.org/10.21273/hortsci11323-16
38 https://doi.org/10.21273/horttech.18.1.130
39 https://doi.org/10.21273/horttech.23.4.430
40 https://doi.org/10.21273/jashs.134.1.77
41 https://doi.org/10.3389/fpls.2017.00373
42 https://doi.org/10.3389/fpls.2017.00915
43 https://doi.org/10.3390/agronomy7020033
44 https://doi.org/10.3390/f7060127
45 https://doi.org/10.3390/rs70404213
46 https://doi.org/10.3390/rs9020111
47 https://doi.org/10.3390/rs9121250
48 https://doi.org/10.3390/s141120078
49 https://doi.org/10.3791/1856
50 https://doi.org/10.3835/plantgenome2017.03.0026
51 https://doi.org/10.5376/pgt.2010.01.0001
52 https://doi.org/10.7717/peerj.4088
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size, and shape descriptors (path curve <i>λ</i> and five shape indices). One-dimensional traits (height, width, and crown size) had high correlations (<i>R</i> <sup>2</sup> = 0.88-0.95) between proposed method and manual measurements, whereas bush volume showed relatively lower correlations (<i>R</i> <sup>2</sup> = 0.78-0.85). These correlations suggested that the present approach was accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume. Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape. The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a visualization tool could be generated using crown size and path curve <i>λ</i>, which showed great potential of determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for mechanical harvesting) and farm management.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N453af594a89d4b57b928d092b0f2eba3
60 Ne375b61103054e02b40fd16674fef66d
61 sg:journal.1051681
62 schema:name 3D point cloud data to quantitatively characterize size and shape of shrub crops
63 schema:pagination 43
64 schema:productId N78e5569fcb8948ddb7ae40d0e4814c14
65 N9c20ff81744b421ead52d73bdbaae7e2
66 Nba9e9803d2e24f13b64b15b88f8aad01
67 Nc21afc5a651a465f9fbbaf06363e5f80
68 Nfa3b479bed2c4c5d9537b38698e51fd8
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113162109
70 https://doi.org/10.1038/s41438-019-0123-9
71 schema:sdDatePublished 2019-04-15T09:19
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N3204a45a3b84402881792f481397977a
74 schema:url https://www.nature.com/articles/s41438-019-0123-9
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N06de2219ffd8466496e931f6b424f252 rdf:first N7900a05390bf4c19b7958c725169ad6b
79 rdf:rest N521ecc9cb5114a0f8cd3bef5b5a308ed
80 N1c0773607c4c4394a1e5cb25fe32216d rdf:first N7a51f2e326284f82aee997c8fa0da19a
81 rdf:rest rdf:nil
82 N3204a45a3b84402881792f481397977a schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N453af594a89d4b57b928d092b0f2eba3 schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N521ecc9cb5114a0f8cd3bef5b5a308ed rdf:first N6142f6bbe5764970a52dbfa5f6170e97
87 rdf:rest Ncc604858c89742d19bd9e541dee5dddd
88 N6142f6bbe5764970a52dbfa5f6170e97 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
89 schema:familyName Kramer
90 schema:givenName Elizabeth A.
91 rdf:type schema:Person
92 N699df92c74cb402d9e70eabe9804b711 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
93 schema:familyName Ashrafi
94 schema:givenName Hamid
95 rdf:type schema:Person
96 N6f50a9a95bdf4a4581ce8b6b494ed1a3 rdf:first Nc4241321ab374401a700ec03f40d3d58
97 rdf:rest Nb591aa34b5474188b87774d4244d950b
98 N78e5569fcb8948ddb7ae40d0e4814c14 schema:name dimensions_id
99 schema:value pub.1113162109
100 rdf:type schema:PropertyValue
101 N7900a05390bf4c19b7958c725169ad6b schema:affiliation https://www.grid.ac/institutes/grid.463419.d
102 schema:familyName Takeda
103 schema:givenName Fumiomi
104 rdf:type schema:Person
105 N7a51f2e326284f82aee997c8fa0da19a schema:affiliation https://www.grid.ac/institutes/grid.213876.9
106 schema:familyName Hunter
107 schema:givenName Jamal
108 rdf:type schema:Person
109 N9c20ff81744b421ead52d73bdbaae7e2 schema:name nlm_unique_id
110 schema:value 101655540
111 rdf:type schema:PropertyValue
112 Nb591aa34b5474188b87774d4244d950b rdf:first Nbe3f1279e37a4bf8b498fad028b47e98
113 rdf:rest N06de2219ffd8466496e931f6b424f252
114 Nba9e9803d2e24f13b64b15b88f8aad01 schema:name readcube_id
115 schema:value f61d11d83d5acda0e5b6757eab4a2e85e97047d6c3a55b42bf8f7b0d0d2347ff
116 rdf:type schema:PropertyValue
117 Nbe3f1279e37a4bf8b498fad028b47e98 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
118 schema:familyName Li
119 schema:givenName Changying
120 rdf:type schema:Person
121 Nc21afc5a651a465f9fbbaf06363e5f80 schema:name pubmed_id
122 schema:value 30962936
123 rdf:type schema:PropertyValue
124 Nc4241321ab374401a700ec03f40d3d58 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
125 schema:familyName Jiang
126 schema:givenName Yu
127 rdf:type schema:Person
128 Ncc604858c89742d19bd9e541dee5dddd rdf:first N699df92c74cb402d9e70eabe9804b711
129 rdf:rest N1c0773607c4c4394a1e5cb25fe32216d
130 Ne375b61103054e02b40fd16674fef66d schema:volumeNumber 6
131 rdf:type schema:PublicationVolume
132 Nfa3b479bed2c4c5d9537b38698e51fd8 schema:name doi
133 schema:value 10.1038/s41438-019-0123-9
134 rdf:type schema:PropertyValue
135 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
136 schema:name Information and Computing Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
139 schema:name Artificial Intelligence and Image Processing
140 rdf:type schema:DefinedTerm
141 sg:grant.3951614 http://pending.schema.org/fundedItem sg:pub.10.1038/s41438-019-0123-9
142 rdf:type schema:MonetaryGrant
143 sg:journal.1051681 schema:issn 2052-7276
144 schema:name Horticulture Research
145 rdf:type schema:Periodical
146 sg:pub.10.1007/bf02228852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011781346
147 https://doi.org/10.1007/bf02228852
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11263-007-0107-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021569711
150 https://doi.org/10.1007/s11263-007-0107-3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11284-005-0090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032735147
153 https://doi.org/10.1007/s11284-005-0090-5
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11947-011-0556-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003298165
156 https://doi.org/10.1007/s11947-011-0556-0
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/s41438-018-0097-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1110346385
159 https://doi.org/10.1038/s41438-018-0097-z
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2105-12-148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032029823
162 https://doi.org/10.1186/1471-2105-12-148
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1006/cviu.1999.0832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025309926
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1007/s11284-005-0090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032735147
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.agrformet.2009.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014572748
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.biosystemseng.2008.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052961296
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.biosystemseng.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033006364
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.compag.2011.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003819915
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.compag.2013.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018480744
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.compag.2014.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048297110
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.compag.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008734033
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.compag.2016.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051612769
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.envsoft.2016.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008114498
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.pbi.2016.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037898208
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.pbi.2017.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090858916
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.postharvbio.2009.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002895747
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.scienta.2013.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025038764
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.scienta.2017.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092225539
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.tplants.2013.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022724478
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1071/fp16167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046702324
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.1613593114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043835805
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/00103624.2017.1299169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085774827
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/15538362.2011.619348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015349807
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/jxb/erw176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022848380
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tro.2012.2200990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785404
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1201/9781482298000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109619223
211 rdf:type schema:CreativeWork
212 https://doi.org/10.13031/2013.25435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064893414
213 rdf:type schema:CreativeWork
214 https://doi.org/10.13031/2013.5794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064905990
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0060522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034840135
217 rdf:type schema:CreativeWork
218 https://doi.org/10.21273/hortsci11323-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068967925
219 rdf:type schema:CreativeWork
220 https://doi.org/10.21273/horttech.18.1.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110655090
221 rdf:type schema:CreativeWork
222 https://doi.org/10.21273/horttech.23.4.430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110655787
223 rdf:type schema:CreativeWork
224 https://doi.org/10.21273/jashs.134.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111867507
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3389/fpls.2017.00373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084434325
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3389/fpls.2017.00915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085721351
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3390/agronomy7020033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085133581
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3390/f7060127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037348384
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3390/rs70404213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031551544
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3390/rs9020111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074238723
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3390/rs9121250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093167841
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3390/s141120078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490891
241 rdf:type schema:CreativeWork
242 https://doi.org/10.3791/1856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040461839
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3835/plantgenome2017.03.0026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092111415
245 rdf:type schema:CreativeWork
246 https://doi.org/10.5376/pgt.2010.01.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072799089
247 rdf:type schema:CreativeWork
248 https://doi.org/10.7717/peerj.4088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093136906
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.213876.9 schema:alternateName University of Georgia
251 schema:name Department of Agricultural and Applied Economics, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA
252 Department of Entomology, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA
253 School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, 30602, Athens, GA, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
256 schema:name Department of Horticultural Science, North Carolina State University, 27695, Raleigh, NC, USA
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
259 schema:name Appalachian Fruit Research Station, United States Department of Agriculture-Agricultural Research Service, 25430, Kearneysville, WV, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...