3D point cloud data to quantitatively characterize size and shape of shrub crops View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Yu Jiang, Changying Li, Fumiomi Takeda, Elizabeth A. Kramer, Hamid Ashrafi, Jamal Hunter

ABSTRACT

Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size, and shape descriptors (path curve λ and five shape indices). One-dimensional traits (height, width, and crown size) had high correlations (R 2 = 0.88-0.95) between proposed method and manual measurements, whereas bush volume showed relatively lower correlations (R 2 = 0.78-0.85). These correlations suggested that the present approach was accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume. Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape. The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a visualization tool could be generated using crown size and path curve λ, which showed great potential of determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for mechanical harvesting) and farm management. More... »

PAGES

43

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9

DOI

http://dx.doi.org/10.1038/s41438-019-0123-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113162109

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30962936


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Yu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Changying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Agricultural Research Service", 
          "id": "https://www.grid.ac/institutes/grid.463419.d", 
          "name": [
            "Appalachian Fruit Research Station, United States Department of Agriculture-Agricultural Research Service, 25430, Kearneysville, WV, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takeda", 
        "givenName": "Fumiomi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Agricultural and Applied Economics, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kramer", 
        "givenName": "Elizabeth A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Horticultural Science, North Carolina State University, 27695, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashrafi", 
        "givenName": "Hamid", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Georgia", 
          "id": "https://www.grid.ac/institutes/grid.213876.9", 
          "name": [
            "Department of Entomology, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "Jamal", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/s141120078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002490891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.postharvbio.2009.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002895747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11947-011-0556-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003298165", 
          "https://doi.org/10.1007/s11947-011-0556-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2011.09.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008114498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsoft.2016.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008114498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2014.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008734033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02228852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011781346", 
          "https://doi.org/10.1007/bf02228852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2009.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014572748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15538362.2011.619348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015349807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2013.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018480744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-007-0107-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021569711", 
          "https://doi.org/10.1007/s11263-007-0107-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tplants.2013.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022724478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jxb/erw176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022848380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scienta.2013.10.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025038764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/cviu.1999.0832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025309926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70404213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031551544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032029823", 
          "https://doi.org/10.1186/1471-2105-12-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-12-148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032029823", 
          "https://doi.org/10.1186/1471-2105-12-148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11284-005-0090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032735147", 
          "https://doi.org/10.1007/s11284-005-0090-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1007/s11284-005-0090-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032735147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033006364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0060522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034840135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/f7060127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037348384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2016.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037898208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3791/1856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040461839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1613593114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043835805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1071/fp16167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046702324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2014.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048297110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051612769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compag.2016.09.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051612769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystemseng.2008.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052961296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tro.2012.2200990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061785404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.25435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064893414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13031/2013.5794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064905990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/hortsci11323-16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068967925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5376/pgt.2010.01.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072799089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9020111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074238723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.00373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084434325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/agronomy7020033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085133581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpls.2017.00915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085721351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00103624.2017.1299169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085774827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2017.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090858916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3835/plantgenome2017.03.0026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092111415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scienta.2017.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092225539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7717/peerj.4088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093136906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9121250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093167841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781482298000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109619223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41438-018-0097-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346385", 
          "https://doi.org/10.1038/s41438-018-0097-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/horttech.18.1.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110655090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/horttech.23.4.430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110655787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.21273/jashs.134.1.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111867507"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size, and shape descriptors (path curve \u03bb and five shape indices). One-dimensional traits (height, width, and crown size) had high correlations (R 2\u2009=\u20090.88-0.95) between proposed method and manual measurements, whereas bush volume showed relatively lower correlations (R 2\u2009=\u20090.78-0.85). These correlations suggested that the present approach was accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume. Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape. The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a visualization tool could be generated using crown size and path curve \u03bb, which showed great potential of determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for mechanical harvesting) and farm management.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41438-019-0123-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3951614", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1051681", 
        "issn": [
          "2052-7276"
        ], 
        "name": "Horticulture Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "3D point cloud data to quantitatively characterize size and shape of shrub crops", 
    "pagination": "43", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41438-019-0123-9"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f61d11d83d5acda0e5b6757eab4a2e85e97047d6c3a55b42bf8f7b0d0d2347ff"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113162109"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101655540"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30962936"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41438-019-0123-9", 
      "https://app.dimensions.ai/details/publication/pub.1113162109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56176_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41438-019-0123-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41438-019-0123-9'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      78 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41438-019-0123-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N22a33e34369340bb94108d9fb1dac56e
4 schema:citation sg:pub.10.1007/bf02228852
5 sg:pub.10.1007/s11263-007-0107-3
6 sg:pub.10.1007/s11284-005-0090-5
7 sg:pub.10.1007/s11947-011-0556-0
8 sg:pub.10.1038/s41438-018-0097-z
9 sg:pub.10.1186/1471-2105-12-148
10 https://doi.org/10.1006/cviu.1999.0832
11 https://doi.org/10.1007/s11284-005-0090-5
12 https://doi.org/10.1016/j.agrformet.2009.04.008
13 https://doi.org/10.1016/j.biosystemseng.2008.10.009
14 https://doi.org/10.1016/j.biosystemseng.2014.01.008
15 https://doi.org/10.1016/j.compag.2011.09.007
16 https://doi.org/10.1016/j.compag.2013.12.001
17 https://doi.org/10.1016/j.compag.2014.09.021
18 https://doi.org/10.1016/j.compag.2014.10.003
19 https://doi.org/10.1016/j.compag.2016.09.014
20 https://doi.org/10.1016/j.envsoft.2016.04.025
21 https://doi.org/10.1016/j.pbi.2016.04.005
22 https://doi.org/10.1016/j.pbi.2017.05.006
23 https://doi.org/10.1016/j.postharvbio.2009.05.001
24 https://doi.org/10.1016/j.scienta.2013.10.028
25 https://doi.org/10.1016/j.scienta.2017.10.006
26 https://doi.org/10.1016/j.tplants.2013.09.008
27 https://doi.org/10.1071/fp16167
28 https://doi.org/10.1073/pnas.1613593114
29 https://doi.org/10.1080/00103624.2017.1299169
30 https://doi.org/10.1080/15538362.2011.619348
31 https://doi.org/10.1093/jxb/erw176
32 https://doi.org/10.1109/tro.2012.2200990
33 https://doi.org/10.1201/9781482298000
34 https://doi.org/10.13031/2013.25435
35 https://doi.org/10.13031/2013.5794
36 https://doi.org/10.1371/journal.pone.0060522
37 https://doi.org/10.21273/hortsci11323-16
38 https://doi.org/10.21273/horttech.18.1.130
39 https://doi.org/10.21273/horttech.23.4.430
40 https://doi.org/10.21273/jashs.134.1.77
41 https://doi.org/10.3389/fpls.2017.00373
42 https://doi.org/10.3389/fpls.2017.00915
43 https://doi.org/10.3390/agronomy7020033
44 https://doi.org/10.3390/f7060127
45 https://doi.org/10.3390/rs70404213
46 https://doi.org/10.3390/rs9020111
47 https://doi.org/10.3390/rs9121250
48 https://doi.org/10.3390/s141120078
49 https://doi.org/10.3791/1856
50 https://doi.org/10.3835/plantgenome2017.03.0026
51 https://doi.org/10.5376/pgt.2010.01.0001
52 https://doi.org/10.7717/peerj.4088
53 schema:datePublished 2019-12
54 schema:datePublishedReg 2019-12-01
55 schema:description Size and shape are important properties of shrub crops such as blueberries, and they can be particularly useful for evaluating bush architecture suited to mechanical harvesting. The overall goal of this study was to develop a 3D imaging approach to measure size-related traits and bush shape that are relevant to mechanical harvesting. 3D point clouds were acquired for 367 bushes from five genotype groups. Point cloud data were preprocessed to obtain clean bush points for characterizing bush architecture, including bush morphology (height, width, and volume), crown size, and shape descriptors (path curve <i>λ</i> and five shape indices). One-dimensional traits (height, width, and crown size) had high correlations (<i>R</i> <sup>2</sup> = 0.88-0.95) between proposed method and manual measurements, whereas bush volume showed relatively lower correlations (<i>R</i> <sup>2</sup> = 0.78-0.85). These correlations suggested that the present approach was accurate in measuring one-dimensional size traits and acceptable in estimating three-dimensional bush volume. Statistical results demonstrated that the five genotype groups were statistically different in crown size and bush shape. The differences matched with human evaluation regarding optimal bush architecture for mechanical harvesting. In particular, a visualization tool could be generated using crown size and path curve <i>λ</i>, which showed great potential of determining bush architecture suitable for mechanical harvesting quickly. Therefore, the processing pipeline of 3D point cloud data presented in this study is an effective tool for blueberry breeding programs (in particular for mechanical harvesting) and farm management.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree false
59 schema:isPartOf N26694a65dcbc4166b2eae5be2f7aadbd
60 N8e88892f456045a9824c309a229db514
61 sg:journal.1051681
62 schema:name 3D point cloud data to quantitatively characterize size and shape of shrub crops
63 schema:pagination 43
64 schema:productId N4965c15adf81467095cc6e4c70ecdbab
65 N64c67eae8cc747c2b912e69d41c2d179
66 N754ff55621df48ec8dd31842b7e5a713
67 N99c60394b82b42e4904226e06d8d01ed
68 Nf5aa6feaa29044ae8ffb2a19f7fbe5b9
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113162109
70 https://doi.org/10.1038/s41438-019-0123-9
71 schema:sdDatePublished 2019-04-15T09:19
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nad3854f68cf24a8eb3d0d9542fb06978
74 schema:url https://www.nature.com/articles/s41438-019-0123-9
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N22a33e34369340bb94108d9fb1dac56e rdf:first N607f179d48eb494d800138db6d96439f
79 rdf:rest N2c472a69039048c7b23d3949c20b5a2d
80 N26694a65dcbc4166b2eae5be2f7aadbd schema:volumeNumber 6
81 rdf:type schema:PublicationVolume
82 N2c472a69039048c7b23d3949c20b5a2d rdf:first Ndac0e6b589d740e1a23a08f387049e90
83 rdf:rest N4e5513e9f9cb49cfb5d3a3f7d7567124
84 N4965c15adf81467095cc6e4c70ecdbab schema:name doi
85 schema:value 10.1038/s41438-019-0123-9
86 rdf:type schema:PropertyValue
87 N4e5513e9f9cb49cfb5d3a3f7d7567124 rdf:first Nf51e1a6f5131417dafe122a4832a4c35
88 rdf:rest N8b5f785071bb4cd090b84a10f8a70d15
89 N607f179d48eb494d800138db6d96439f schema:affiliation https://www.grid.ac/institutes/grid.213876.9
90 schema:familyName Jiang
91 schema:givenName Yu
92 rdf:type schema:Person
93 N64c67eae8cc747c2b912e69d41c2d179 schema:name dimensions_id
94 schema:value pub.1113162109
95 rdf:type schema:PropertyValue
96 N754ff55621df48ec8dd31842b7e5a713 schema:name pubmed_id
97 schema:value 30962936
98 rdf:type schema:PropertyValue
99 N75cd189a86e947de9875577e662a9311 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
100 schema:familyName Kramer
101 schema:givenName Elizabeth A.
102 rdf:type schema:Person
103 N8b5f785071bb4cd090b84a10f8a70d15 rdf:first N75cd189a86e947de9875577e662a9311
104 rdf:rest Nb7a464a9a51849e7bd3c8d76e846b6a1
105 N8e88892f456045a9824c309a229db514 schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 N99c60394b82b42e4904226e06d8d01ed schema:name readcube_id
108 schema:value f61d11d83d5acda0e5b6757eab4a2e85e97047d6c3a55b42bf8f7b0d0d2347ff
109 rdf:type schema:PropertyValue
110 Nab628748e2e24182829b53d42311f5c0 rdf:first Nc3a6f949808c480589396ca201a7d04d
111 rdf:rest rdf:nil
112 Nad3854f68cf24a8eb3d0d9542fb06978 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nb7a464a9a51849e7bd3c8d76e846b6a1 rdf:first Nd3d824007831413c87e8bb25f2372025
115 rdf:rest Nab628748e2e24182829b53d42311f5c0
116 Nc3a6f949808c480589396ca201a7d04d schema:affiliation https://www.grid.ac/institutes/grid.213876.9
117 schema:familyName Hunter
118 schema:givenName Jamal
119 rdf:type schema:Person
120 Nd3d824007831413c87e8bb25f2372025 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
121 schema:familyName Ashrafi
122 schema:givenName Hamid
123 rdf:type schema:Person
124 Ndac0e6b589d740e1a23a08f387049e90 schema:affiliation https://www.grid.ac/institutes/grid.213876.9
125 schema:familyName Li
126 schema:givenName Changying
127 rdf:type schema:Person
128 Nf51e1a6f5131417dafe122a4832a4c35 schema:affiliation https://www.grid.ac/institutes/grid.463419.d
129 schema:familyName Takeda
130 schema:givenName Fumiomi
131 rdf:type schema:Person
132 Nf5aa6feaa29044ae8ffb2a19f7fbe5b9 schema:name nlm_unique_id
133 schema:value 101655540
134 rdf:type schema:PropertyValue
135 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
136 schema:name Information and Computing Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
139 schema:name Artificial Intelligence and Image Processing
140 rdf:type schema:DefinedTerm
141 sg:grant.3951614 http://pending.schema.org/fundedItem sg:pub.10.1038/s41438-019-0123-9
142 rdf:type schema:MonetaryGrant
143 sg:journal.1051681 schema:issn 2052-7276
144 schema:name Horticulture Research
145 rdf:type schema:Periodical
146 sg:pub.10.1007/bf02228852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011781346
147 https://doi.org/10.1007/bf02228852
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11263-007-0107-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021569711
150 https://doi.org/10.1007/s11263-007-0107-3
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11284-005-0090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032735147
153 https://doi.org/10.1007/s11284-005-0090-5
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11947-011-0556-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003298165
156 https://doi.org/10.1007/s11947-011-0556-0
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/s41438-018-0097-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1110346385
159 https://doi.org/10.1038/s41438-018-0097-z
160 rdf:type schema:CreativeWork
161 sg:pub.10.1186/1471-2105-12-148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032029823
162 https://doi.org/10.1186/1471-2105-12-148
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1006/cviu.1999.0832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025309926
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1007/s11284-005-0090-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032735147
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.agrformet.2009.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014572748
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.biosystemseng.2008.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052961296
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.biosystemseng.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033006364
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.compag.2011.09.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003819915
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.compag.2013.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018480744
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.compag.2014.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048297110
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.compag.2014.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008734033
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.compag.2016.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051612769
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.envsoft.2016.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008114498
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.pbi.2016.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037898208
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.pbi.2017.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090858916
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.postharvbio.2009.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002895747
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.scienta.2013.10.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025038764
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.scienta.2017.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092225539
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.tplants.2013.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022724478
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1071/fp16167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046702324
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1073/pnas.1613593114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043835805
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1080/00103624.2017.1299169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085774827
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1080/15538362.2011.619348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015349807
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1093/jxb/erw176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022848380
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/tro.2012.2200990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061785404
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1201/9781482298000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109619223
211 rdf:type schema:CreativeWork
212 https://doi.org/10.13031/2013.25435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064893414
213 rdf:type schema:CreativeWork
214 https://doi.org/10.13031/2013.5794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064905990
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1371/journal.pone.0060522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034840135
217 rdf:type schema:CreativeWork
218 https://doi.org/10.21273/hortsci11323-16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068967925
219 rdf:type schema:CreativeWork
220 https://doi.org/10.21273/horttech.18.1.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110655090
221 rdf:type schema:CreativeWork
222 https://doi.org/10.21273/horttech.23.4.430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110655787
223 rdf:type schema:CreativeWork
224 https://doi.org/10.21273/jashs.134.1.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111867507
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3389/fpls.2017.00373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084434325
227 rdf:type schema:CreativeWork
228 https://doi.org/10.3389/fpls.2017.00915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085721351
229 rdf:type schema:CreativeWork
230 https://doi.org/10.3390/agronomy7020033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085133581
231 rdf:type schema:CreativeWork
232 https://doi.org/10.3390/f7060127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037348384
233 rdf:type schema:CreativeWork
234 https://doi.org/10.3390/rs70404213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031551544
235 rdf:type schema:CreativeWork
236 https://doi.org/10.3390/rs9020111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074238723
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3390/rs9121250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093167841
239 rdf:type schema:CreativeWork
240 https://doi.org/10.3390/s141120078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002490891
241 rdf:type schema:CreativeWork
242 https://doi.org/10.3791/1856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040461839
243 rdf:type schema:CreativeWork
244 https://doi.org/10.3835/plantgenome2017.03.0026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092111415
245 rdf:type schema:CreativeWork
246 https://doi.org/10.5376/pgt.2010.01.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072799089
247 rdf:type schema:CreativeWork
248 https://doi.org/10.7717/peerj.4088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093136906
249 rdf:type schema:CreativeWork
250 https://www.grid.ac/institutes/grid.213876.9 schema:alternateName University of Georgia
251 schema:name Department of Agricultural and Applied Economics, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA
252 Department of Entomology, College of Agricultural and Environmental Sciences, The University of Georgia, 30602, Athens, GA, USA
253 School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, 30602, Athens, GA, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
256 schema:name Department of Horticultural Science, North Carolina State University, 27695, Raleigh, NC, USA
257 rdf:type schema:Organization
258 https://www.grid.ac/institutes/grid.463419.d schema:alternateName Agricultural Research Service
259 schema:name Appalachian Fruit Research Station, United States Department of Agriculture-Agricultural Research Service, 25430, Kearneysville, WV, USA
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...