Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Craig M. Hardner, Ben J. Hayes, Satish Kumar, Stijn Vanderzande, Lichun Cai, Julia Piaskowski, José Quero-Garcia, José Antonio Campoy, Teresa Barreneche, Daniela Giovannini, Alessandro Liverani, Gérard Charlot, Miguel Villamil-Castro, Nnadozie Oraguzie, Cameron P. Peace

ABSTRACT

The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments. More... »

PAGES

6

References to SciGraph publications

  • 2014-04. Estimates of genetic parameters and breeding values from western larch open-pollinated families using marker-based relationship in TREE GENETICS & GENOMES
  • 2010-12. Population structure and genetic bottleneck in sweet cherry estimated with SSRs and the gametophytic self-incompatibility locus in BMC GENETICS
  • 2013-02. Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding in TREE GENETICS & GENOMES
  • 2016-12. Improving prediction accuracy and selection of open-pollinated seed-lots in Eucalyptus dunnii Maiden using a multivariate mixed model approach in ANNALS OF FOREST SCIENCE
  • 2014-05. Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple in THEORETICAL AND APPLIED GENETICS
  • 2012-11. Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry in HEREDITY
  • 2017-12. Genetic diversity, population structure, and linkage disequilibrium of elite and local apple accessions from Belgium using the IRSC array in TREE GENETICS & GENOMES
  • 2015-01. Relatedness in the post-genomic era: is it still useful? in NATURE REVIEWS GENETICS
  • 1994-07. Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments in THEORETICAL AND APPLIED GENETICS
  • 2017-12. Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies in BMC GENOMICS
  • 2018-12. Genomic heritability estimates in sweet cherry reveal non-additive genetic variance is relevant for industry-prioritized traits in BMC GENETICS
  • 2015-12. Second-generation PLINK: rising to the challenge of larger and richer datasets in GIGASCIENCE
  • 2003-11. Influence of the modified atmosphere packaging on shelf life and quality of Navalinda sweet cherry in EUROPEAN FOOD RESEARCH AND TECHNOLOGY
  • 2016-04. Genetic architecture of apple fruit quality traits following storage and implications for genetic improvement in TREE GENETICS & GENOMES
  • 2010-12. Patterns of genotype-by-environment interaction in diameter at breast height at age 3 for eucalypt hybrid clones grown for reafforestation of lands affected by salinity in TREE GENETICS & GENOMES
  • 2017-02. Genetic diversity of the sweet chestnut (Castanea sativa Mill.) in Central Europe and the western part of the Balkan Peninsula and evidence of marron genotype introgression into wild populations in TREE GENETICS & GENOMES
  • 2012-07. Prediction of breeding values for average fruit weight in mango using a multivariate individual mixed model in EUPHYTICA
  • 2015-12. Accuracy and responses of genomic selection on key traits in apple breeding in HORTICULTURE RESEARCH
  • 2016-12. Genetic diversity, linkage disequilibrium, population structure and construction of a core collection of Prunus avium L. landraces and bred cultivars in BMC PLANT BIOLOGY
  • 2016-08. PediHaplotyper: software for consistent assignment of marker haplotypes in pedigrees in MOLECULAR BREEDING
  • 1992-07. Prediction of additive and dominance effects in selected or unselected populations with inbreeding in THEORETICAL AND APPLIED GENETICS
  • 2008-04. Heritability in the genomics era — concepts and misconceptions in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41438-018-0081-7

    DOI

    http://dx.doi.org/10.1038/s41438-018-0081-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111003909

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30603092


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Queensland", 
              "id": "https://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "University of Queensland, Queensland Alliance for Agriculture and Food Innovation, 4072, Brisbane, QLD, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hardner", 
            "givenName": "Craig M.", 
            "id": "sg:person.010112775255.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010112775255.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Queensland", 
              "id": "https://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "University of Queensland, Queensland Alliance for Agriculture and Food Innovation, 4072, Brisbane, QLD, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hayes", 
            "givenName": "Ben J.", 
            "id": "sg:person.0673516016.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673516016.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Plant & Food Research", 
              "id": "https://www.grid.ac/institutes/grid.27859.31", 
              "name": [
                "The New Zealand Institute for Plant and Food Research Limited, Hawke\u2019s Bay Research Centre, 4130, Hastings, New Zealand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Satish", 
            "id": "sg:person.01262566423.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262566423.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington State University", 
              "id": "https://www.grid.ac/institutes/grid.30064.31", 
              "name": [
                "Department of Horticulture, Washington State University, 99164, Pullman, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vanderzande", 
            "givenName": "Stijn", 
            "id": "sg:person.01146340023.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146340023.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Michigan State University", 
              "id": "https://www.grid.ac/institutes/grid.17088.36", 
              "name": [
                "Department of Horticulture, Michigan State University, 48824, East Lansing, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Lichun", 
            "id": "sg:person.01202364337.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202364337.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington State University", 
              "id": "https://www.grid.ac/institutes/grid.30064.31", 
              "name": [
                "Department of Horticulture, Washington State University, 99164, Pullman, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Piaskowski", 
            "givenName": "Julia", 
            "id": "sg:person.0651452622.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651452622.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "UMR 1332 BFP, INRA, University of Bordeaux, 33140, Nouvelle-Aquitaine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quero-Garcia", 
            "givenName": "Jos\u00e9", 
            "id": "sg:person.01227230370.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227230370.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "UMR 1332 BFP, INRA, University of Bordeaux, 33140, Nouvelle-Aquitaine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Campoy", 
            "givenName": "Jos\u00e9 Antonio", 
            "id": "sg:person.01315156424.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315156424.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "UMR 1332 BFP, INRA, University of Bordeaux, 33140, Nouvelle-Aquitaine, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barreneche", 
            "givenName": "Teresa", 
            "id": "sg:person.01152614434.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152614434.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Council for Agricultural Research and Economics (CREA), Fruit Unit of Forl\u00ec, Via la Canapona, 1 bis, 47121, Emilia-Romagna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giovannini", 
            "givenName": "Daniela", 
            "id": "sg:person.010063531553.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063531553.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Council for Agricultural Research and Economics (CREA), Fruit Unit of Forl\u00ec, Via la Canapona, 1 bis, 47121, Emilia-Romagna, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liverani", 
            "givenName": "Alessandro", 
            "id": "sg:person.01006406371.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006406371.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Centre Technique Interprofessionnel des Fruits et L\u00e9gumes (CTIFL), 751 Chemin de Balandran, 30127, Bellegarde, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Charlot", 
            "givenName": "G\u00e9rard", 
            "id": "sg:person.015005254541.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015005254541.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Queensland", 
              "id": "https://www.grid.ac/institutes/grid.1003.2", 
              "name": [
                "University of Queensland, Queensland Alliance for Agriculture and Food Innovation, 4072, Brisbane, QLD, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Villamil-Castro", 
            "givenName": "Miguel", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington State University", 
              "id": "https://www.grid.ac/institutes/grid.30064.31", 
              "name": [
                "Department of Horticulture, Washington State University, Irrigated Agriculture Research and Extension Center, 24106N Bunn Road, 99350, Prosser, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oraguzie", 
            "givenName": "Nnadozie", 
            "id": "sg:person.0620340207.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620340207.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Washington State University", 
              "id": "https://www.grid.ac/institutes/grid.30064.31", 
              "name": [
                "Department of Horticulture, Washington State University, 99164, Pullman, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peace", 
            "givenName": "Cameron P.", 
            "id": "sg:person.01334542723.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334542723.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00229506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002854033", 
              "https://doi.org/10.1007/bf00229506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00229506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002854033", 
              "https://doi.org/10.1007/bf00229506"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-842x.2010.00570.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004790787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-842x.2010.00570.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004790787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jbg.12109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005373299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12870-016-0712-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006216279", 
              "https://doi.org/10.1186/s12870-016-0712-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btv446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006955931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-012-0639-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009313828", 
              "https://doi.org/10.1007/s10681-012-0639-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-012-0639-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009313828", 
              "https://doi.org/10.1007/s10681-012-0639-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-012-0639-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009313828", 
              "https://doi.org/10.1007/s10681-012-0639-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0003356100035364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009925867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-010-0295-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010403325", 
              "https://doi.org/10.1007/s11295-010-0295-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-010-0295-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010403325", 
              "https://doi.org/10.1007/s11295-010-0295-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00217-003-0789-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010838016", 
              "https://doi.org/10.1007/s00217-003-0789-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0301-6226(86)90071-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014390928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0301-6226(86)90071-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014390928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.081190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017395594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.081190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017395594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hortres.2015.60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017761298", 
              "https://doi.org/10.1038/hortres.2015.60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-016-0977-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017835050", 
              "https://doi.org/10.1007/s11295-016-0977-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-013-0673-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020504261", 
              "https://doi.org/10.1007/s11295-013-0673-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0130855", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020636330"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1071/ea97046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020844079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.0006-341x.2001.01138.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021322635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-012-0528-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022357310", 
              "https://doi.org/10.1007/s11295-012-0528-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0127750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024110197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-016-0539-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024782125", 
              "https://doi.org/10.1007/s11032-016-0539-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-016-0539-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024782125", 
              "https://doi.org/10.1007/s11032-016-0539-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.150029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025094141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.113.150029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025094141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-11-77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025942784", 
              "https://doi.org/10.1186/1471-2156-11-77"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0036674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026716629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1127(90)90134-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026896230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1127(90)90134-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026896230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.12827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027875996"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028320217", 
              "https://doi.org/10.1038/nrg3821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2012.38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033630722", 
              "https://doi.org/10.1038/hdy.2012.38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0048305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034004786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.112.143313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034867521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.112.143313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034867521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.115.021105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036270795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.115.021105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036270795"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13742-015-0047-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037894462", 
              "https://doi.org/10.1186/s13742-015-0047-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts335", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040018105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-014-2281-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040954778", 
              "https://doi.org/10.1007/s00122-014-2281-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.171322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041638300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.114.171322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041638300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.027524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046560774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.116.027524", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046560774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13595-016-0587-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046745825", 
              "https://doi.org/10.1007/s13595-016-0587-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13595-016-0587-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046745825", 
              "https://doi.org/10.1007/s13595-016-0587-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046913669", 
              "https://doi.org/10.1038/nrg2322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0136803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048510861"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01240919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050846068", 
              "https://doi.org/10.1007/bf01240919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/521987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052475645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-017-1107-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053760409", 
              "https://doi.org/10.1007/s11295-017-1107-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-017-1107-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053760409", 
              "https://doi.org/10.1007/s11295-017-1107-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0021859605005587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053923305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0016672308009981", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054010199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/281736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058591859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1094/pd-77-0810", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060086149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17660/actahortic.2005.667.77", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068409398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17660/actahortic.2008.795.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068417197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17660/actahortic.2008.795.136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068417238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17660/actahortic.2010.859.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068421578"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17660/actahortic.2014.1020.5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068431468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci1964.0011183x000400050021x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069013473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2005.07-0193", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069029572"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2006.08.0540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069030108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2011.06.0299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069031548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2014.06.0415", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069032445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2135/cropsci2015.06.0375", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069032738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2529430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069975084"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2527/jas1985.601111x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070900982"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.2007-0980", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1077799697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-3781-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085872476", 
              "https://doi.org/10.1186/s12864-017-3781-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12864-017-3781-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085872476", 
              "https://doi.org/10.1186/s12864-017-3781-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3168/jds.s0022-0302(77)83935-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086083291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-017-1206-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092633747", 
              "https://doi.org/10.1007/s11295-017-1206-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-018-0609-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103149090", 
              "https://doi.org/10.1186/s12863-018-0609-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12863-018-0609-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103149090", 
              "https://doi.org/10.1186/s12863-018-0609-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.21273/horttech.15.4.0886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110654854"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G\u2009\u00d7\u2009E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G\u2009\u00d7\u2009E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G\u2009\u00d7\u2009E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41438-018-0081-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3956105", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1051681", 
            "issn": [
              "2052-7276"
            ], 
            "name": "Horticulture Research", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "6"
          }
        ], 
        "name": "Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array", 
        "pagination": "6", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "764f29362bcdcab1ce7e07ec0da4138f0a19b7505386bcf299a2e6ea4ea9ee55"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30603092"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101655540"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41438-018-0081-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111003909"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41438-018-0081-7", 
          "https://app.dimensions.ai/details/publication/pub.1111003909"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T08:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000310_0000000310/records_90753_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41438-018-0081-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41438-018-0081-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41438-018-0081-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41438-018-0081-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41438-018-0081-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    403 TRIPLES      21 PREDICATES      93 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41438-018-0081-7 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N15d4b2e01bd84fa193c5b9e8ed24da5d
    4 schema:citation sg:pub.10.1007/bf00229506
    5 sg:pub.10.1007/bf01240919
    6 sg:pub.10.1007/s00122-014-2281-3
    7 sg:pub.10.1007/s00217-003-0789-x
    8 sg:pub.10.1007/s10681-012-0639-7
    9 sg:pub.10.1007/s11032-016-0539-y
    10 sg:pub.10.1007/s11295-010-0295-9
    11 sg:pub.10.1007/s11295-012-0528-1
    12 sg:pub.10.1007/s11295-013-0673-1
    13 sg:pub.10.1007/s11295-016-0977-z
    14 sg:pub.10.1007/s11295-017-1107-2
    15 sg:pub.10.1007/s11295-017-1206-0
    16 sg:pub.10.1007/s13595-016-0587-9
    17 sg:pub.10.1038/hdy.2012.38
    18 sg:pub.10.1038/hortres.2015.60
    19 sg:pub.10.1038/nrg2322
    20 sg:pub.10.1038/nrg3821
    21 sg:pub.10.1186/1471-2156-11-77
    22 sg:pub.10.1186/s12863-018-0609-8
    23 sg:pub.10.1186/s12864-017-3781-8
    24 sg:pub.10.1186/s12870-016-0712-9
    25 sg:pub.10.1186/s13742-015-0047-8
    26 https://doi.org/10.1016/0301-6226(86)90071-0
    27 https://doi.org/10.1016/0378-1127(90)90134-w
    28 https://doi.org/10.1017/s0003356100035364
    29 https://doi.org/10.1017/s0016672308009981
    30 https://doi.org/10.1017/s0021859605005587
    31 https://doi.org/10.1071/ea97046
    32 https://doi.org/10.1086/281736
    33 https://doi.org/10.1086/521987
    34 https://doi.org/10.1093/bioinformatics/bts335
    35 https://doi.org/10.1093/bioinformatics/btv446
    36 https://doi.org/10.1094/pd-77-0810
    37 https://doi.org/10.1111/j.0006-341x.2001.01138.x
    38 https://doi.org/10.1111/j.1467-842x.2010.00570.x
    39 https://doi.org/10.1111/jbg.12109
    40 https://doi.org/10.1111/mec.12827
    41 https://doi.org/10.1371/journal.pone.0036674
    42 https://doi.org/10.1371/journal.pone.0048305
    43 https://doi.org/10.1371/journal.pone.0127750
    44 https://doi.org/10.1371/journal.pone.0130855
    45 https://doi.org/10.1371/journal.pone.0136803
    46 https://doi.org/10.1534/g3.115.021105
    47 https://doi.org/10.1534/g3.116.027524
    48 https://doi.org/10.1534/genetics.107.081190
    49 https://doi.org/10.1534/genetics.112.143313
    50 https://doi.org/10.1534/genetics.113.150029
    51 https://doi.org/10.1534/genetics.114.171322
    52 https://doi.org/10.17660/actahortic.2005.667.77
    53 https://doi.org/10.17660/actahortic.2008.795.1
    54 https://doi.org/10.17660/actahortic.2008.795.136
    55 https://doi.org/10.17660/actahortic.2010.859.47
    56 https://doi.org/10.17660/actahortic.2014.1020.5
    57 https://doi.org/10.21273/horttech.15.4.0886
    58 https://doi.org/10.2135/cropsci1964.0011183x000400050021x
    59 https://doi.org/10.2135/cropsci2005.07-0193
    60 https://doi.org/10.2135/cropsci2006.08.0540
    61 https://doi.org/10.2135/cropsci2011.06.0299
    62 https://doi.org/10.2135/cropsci2014.06.0415
    63 https://doi.org/10.2135/cropsci2015.06.0375
    64 https://doi.org/10.2307/2529430
    65 https://doi.org/10.2527/jas1985.601111x
    66 https://doi.org/10.3168/jds.2007-0980
    67 https://doi.org/10.3168/jds.s0022-0302(77)83935-0
    68 schema:datePublished 2019-12
    69 schema:datePublishedReg 2019-12-01
    70 schema:description The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.
    71 schema:genre research_article
    72 schema:inLanguage en
    73 schema:isAccessibleForFree true
    74 schema:isPartOf N5e315dcf28e74f24bc002efd776689ab
    75 N7b682908c17948308e9bc4d4f0a1cee4
    76 sg:journal.1051681
    77 schema:name Prediction of genetic value for sweet cherry fruit maturity among environments using a 6K SNP array
    78 schema:pagination 6
    79 schema:productId N2ca76d78684d4e39b73169e23abf6935
    80 N889e7b8dc3f14494a409a14c341ff020
    81 Na5c777c3be79440b8c53d4629eff1742
    82 Nb13454b896a44ebeb4323ee5f5a69da0
    83 Nefcf5a6c1c2748e89b4e121a6edb604d
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111003909
    85 https://doi.org/10.1038/s41438-018-0081-7
    86 schema:sdDatePublished 2019-04-11T08:34
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher Na0150b1028fa421d927c2ac622bdadde
    89 schema:url https://www.nature.com/articles/s41438-018-0081-7
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N15d4b2e01bd84fa193c5b9e8ed24da5d rdf:first sg:person.010112775255.10
    94 rdf:rest Nf3401efeb24842b98540d2ce9f6c36de
    95 N1ab3fbf2b17445e2a0b715e1d6fe0253 rdf:first sg:person.01146340023.44
    96 rdf:rest Na4f56e0b6c034559b754465f8feca925
    97 N2a0f098f75c24fc98b5b35218184590f rdf:first Na0f396ec01854e0483af20abe7ea5537
    98 rdf:rest Ndc46938aced74a59adbdc9140b10c108
    99 N2ca76d78684d4e39b73169e23abf6935 schema:name pubmed_id
    100 schema:value 30603092
    101 rdf:type schema:PropertyValue
    102 N39dcef91ad0e4642b7936b5b80880706 rdf:first sg:person.0651452622.66
    103 rdf:rest N594bc9b844174b1b898db9fd48e5dbb1
    104 N489da77772e54e4e93f23288c31885a6 schema:name Centre Technique Interprofessionnel des Fruits et Légumes (CTIFL), 751 Chemin de Balandran, 30127, Bellegarde, France
    105 rdf:type schema:Organization
    106 N4aca1c0499d24b34bd6471cf458330e7 rdf:first sg:person.01315156424.20
    107 rdf:rest Nb1f810e865e04caa9706163e31c48a0c
    108 N569bde1aa5e148e78c5ef91dac3001e3 schema:name Council for Agricultural Research and Economics (CREA), Fruit Unit of Forlì, Via la Canapona, 1 bis, 47121, Emilia-Romagna, Italy
    109 rdf:type schema:Organization
    110 N594bc9b844174b1b898db9fd48e5dbb1 rdf:first sg:person.01227230370.62
    111 rdf:rest N4aca1c0499d24b34bd6471cf458330e7
    112 N5a0b574e10cd46f6b8869d356eb6d550 rdf:first sg:person.015005254541.73
    113 rdf:rest N2a0f098f75c24fc98b5b35218184590f
    114 N5e315dcf28e74f24bc002efd776689ab schema:volumeNumber 6
    115 rdf:type schema:PublicationVolume
    116 N7b682908c17948308e9bc4d4f0a1cee4 schema:issueNumber 1
    117 rdf:type schema:PublicationIssue
    118 N889e7b8dc3f14494a409a14c341ff020 schema:name readcube_id
    119 schema:value 764f29362bcdcab1ce7e07ec0da4138f0a19b7505386bcf299a2e6ea4ea9ee55
    120 rdf:type schema:PropertyValue
    121 N97fc90a3bcbe4512a620d3d0ba4d8d18 rdf:first sg:person.010063531553.19
    122 rdf:rest Na7341c1ad3eb4c9895884c6c7bfdf5da
    123 Na0150b1028fa421d927c2ac622bdadde schema:name Springer Nature - SN SciGraph project
    124 rdf:type schema:Organization
    125 Na0625da3941b40a7b62dad97ccf80d33 schema:name UMR 1332 BFP, INRA, University of Bordeaux, 33140, Nouvelle-Aquitaine, France
    126 rdf:type schema:Organization
    127 Na0f396ec01854e0483af20abe7ea5537 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
    128 schema:familyName Villamil-Castro
    129 schema:givenName Miguel
    130 rdf:type schema:Person
    131 Na4f56e0b6c034559b754465f8feca925 rdf:first sg:person.01202364337.51
    132 rdf:rest N39dcef91ad0e4642b7936b5b80880706
    133 Na5c777c3be79440b8c53d4629eff1742 schema:name nlm_unique_id
    134 schema:value 101655540
    135 rdf:type schema:PropertyValue
    136 Na7341c1ad3eb4c9895884c6c7bfdf5da rdf:first sg:person.01006406371.60
    137 rdf:rest N5a0b574e10cd46f6b8869d356eb6d550
    138 Nb13454b896a44ebeb4323ee5f5a69da0 schema:name dimensions_id
    139 schema:value pub.1111003909
    140 rdf:type schema:PropertyValue
    141 Nb1f810e865e04caa9706163e31c48a0c rdf:first sg:person.01152614434.76
    142 rdf:rest N97fc90a3bcbe4512a620d3d0ba4d8d18
    143 Nb85259bc3c264b858cea602334b60456 schema:name UMR 1332 BFP, INRA, University of Bordeaux, 33140, Nouvelle-Aquitaine, France
    144 rdf:type schema:Organization
    145 Nbd1f0a7ed0f04495a0102af20d275a78 schema:name Council for Agricultural Research and Economics (CREA), Fruit Unit of Forlì, Via la Canapona, 1 bis, 47121, Emilia-Romagna, Italy
    146 rdf:type schema:Organization
    147 Nbda77716a8cd4fba990cffa185c7e3b8 schema:name UMR 1332 BFP, INRA, University of Bordeaux, 33140, Nouvelle-Aquitaine, France
    148 rdf:type schema:Organization
    149 Nccf0c19e40cb4744a3eb54d04d539b40 rdf:first sg:person.01262566423.49
    150 rdf:rest N1ab3fbf2b17445e2a0b715e1d6fe0253
    151 Ndc46938aced74a59adbdc9140b10c108 rdf:first sg:person.0620340207.74
    152 rdf:rest Nfcb1fb2bf1c44b7cb9fcd2897ccadc83
    153 Nefcf5a6c1c2748e89b4e121a6edb604d schema:name doi
    154 schema:value 10.1038/s41438-018-0081-7
    155 rdf:type schema:PropertyValue
    156 Nf3401efeb24842b98540d2ce9f6c36de rdf:first sg:person.0673516016.79
    157 rdf:rest Nccf0c19e40cb4744a3eb54d04d539b40
    158 Nfcb1fb2bf1c44b7cb9fcd2897ccadc83 rdf:first sg:person.01334542723.65
    159 rdf:rest rdf:nil
    160 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    161 schema:name Biological Sciences
    162 rdf:type schema:DefinedTerm
    163 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    164 schema:name Genetics
    165 rdf:type schema:DefinedTerm
    166 sg:grant.3956105 http://pending.schema.org/fundedItem sg:pub.10.1038/s41438-018-0081-7
    167 rdf:type schema:MonetaryGrant
    168 sg:journal.1051681 schema:issn 2052-7276
    169 schema:name Horticulture Research
    170 rdf:type schema:Periodical
    171 sg:person.010063531553.19 schema:affiliation Nbd1f0a7ed0f04495a0102af20d275a78
    172 schema:familyName Giovannini
    173 schema:givenName Daniela
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010063531553.19
    175 rdf:type schema:Person
    176 sg:person.01006406371.60 schema:affiliation N569bde1aa5e148e78c5ef91dac3001e3
    177 schema:familyName Liverani
    178 schema:givenName Alessandro
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006406371.60
    180 rdf:type schema:Person
    181 sg:person.010112775255.10 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
    182 schema:familyName Hardner
    183 schema:givenName Craig M.
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010112775255.10
    185 rdf:type schema:Person
    186 sg:person.01146340023.44 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
    187 schema:familyName Vanderzande
    188 schema:givenName Stijn
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146340023.44
    190 rdf:type schema:Person
    191 sg:person.01152614434.76 schema:affiliation Nb85259bc3c264b858cea602334b60456
    192 schema:familyName Barreneche
    193 schema:givenName Teresa
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152614434.76
    195 rdf:type schema:Person
    196 sg:person.01202364337.51 schema:affiliation https://www.grid.ac/institutes/grid.17088.36
    197 schema:familyName Cai
    198 schema:givenName Lichun
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01202364337.51
    200 rdf:type schema:Person
    201 sg:person.01227230370.62 schema:affiliation Na0625da3941b40a7b62dad97ccf80d33
    202 schema:familyName Quero-Garcia
    203 schema:givenName José
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227230370.62
    205 rdf:type schema:Person
    206 sg:person.01262566423.49 schema:affiliation https://www.grid.ac/institutes/grid.27859.31
    207 schema:familyName Kumar
    208 schema:givenName Satish
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262566423.49
    210 rdf:type schema:Person
    211 sg:person.01315156424.20 schema:affiliation Nbda77716a8cd4fba990cffa185c7e3b8
    212 schema:familyName Campoy
    213 schema:givenName José Antonio
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315156424.20
    215 rdf:type schema:Person
    216 sg:person.01334542723.65 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
    217 schema:familyName Peace
    218 schema:givenName Cameron P.
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334542723.65
    220 rdf:type schema:Person
    221 sg:person.015005254541.73 schema:affiliation N489da77772e54e4e93f23288c31885a6
    222 schema:familyName Charlot
    223 schema:givenName Gérard
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015005254541.73
    225 rdf:type schema:Person
    226 sg:person.0620340207.74 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
    227 schema:familyName Oraguzie
    228 schema:givenName Nnadozie
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620340207.74
    230 rdf:type schema:Person
    231 sg:person.0651452622.66 schema:affiliation https://www.grid.ac/institutes/grid.30064.31
    232 schema:familyName Piaskowski
    233 schema:givenName Julia
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651452622.66
    235 rdf:type schema:Person
    236 sg:person.0673516016.79 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
    237 schema:familyName Hayes
    238 schema:givenName Ben J.
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673516016.79
    240 rdf:type schema:Person
    241 sg:pub.10.1007/bf00229506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002854033
    242 https://doi.org/10.1007/bf00229506
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1007/bf01240919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846068
    245 https://doi.org/10.1007/bf01240919
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1007/s00122-014-2281-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040954778
    248 https://doi.org/10.1007/s00122-014-2281-3
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1007/s00217-003-0789-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010838016
    251 https://doi.org/10.1007/s00217-003-0789-x
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1007/s10681-012-0639-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009313828
    254 https://doi.org/10.1007/s10681-012-0639-7
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1007/s11032-016-0539-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024782125
    257 https://doi.org/10.1007/s11032-016-0539-y
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1007/s11295-010-0295-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010403325
    260 https://doi.org/10.1007/s11295-010-0295-9
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1007/s11295-012-0528-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022357310
    263 https://doi.org/10.1007/s11295-012-0528-1
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1007/s11295-013-0673-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020504261
    266 https://doi.org/10.1007/s11295-013-0673-1
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1007/s11295-016-0977-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1017835050
    269 https://doi.org/10.1007/s11295-016-0977-z
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s11295-017-1107-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053760409
    272 https://doi.org/10.1007/s11295-017-1107-2
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s11295-017-1206-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092633747
    275 https://doi.org/10.1007/s11295-017-1206-0
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s13595-016-0587-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046745825
    278 https://doi.org/10.1007/s13595-016-0587-9
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/hdy.2012.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033630722
    281 https://doi.org/10.1038/hdy.2012.38
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/hortres.2015.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017761298
    284 https://doi.org/10.1038/hortres.2015.60
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nrg2322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046913669
    287 https://doi.org/10.1038/nrg2322
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nrg3821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028320217
    290 https://doi.org/10.1038/nrg3821
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1186/1471-2156-11-77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025942784
    293 https://doi.org/10.1186/1471-2156-11-77
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1186/s12863-018-0609-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103149090
    296 https://doi.org/10.1186/s12863-018-0609-8
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1186/s12864-017-3781-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085872476
    299 https://doi.org/10.1186/s12864-017-3781-8
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1186/s12870-016-0712-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006216279
    302 https://doi.org/10.1186/s12870-016-0712-9
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1186/s13742-015-0047-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037894462
    305 https://doi.org/10.1186/s13742-015-0047-8
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1016/0301-6226(86)90071-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014390928
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1016/0378-1127(90)90134-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1026896230
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1017/s0003356100035364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009925867
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1017/s0016672308009981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054010199
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1017/s0021859605005587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053923305
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1071/ea97046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020844079
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1086/281736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058591859
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1086/521987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052475645
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1093/bioinformatics/bts335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040018105
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1093/bioinformatics/btv446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006955931
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1094/pd-77-0810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060086149
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1111/j.0006-341x.2001.01138.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021322635
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1111/j.1467-842x.2010.00570.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004790787
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1111/jbg.12109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005373299
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1111/mec.12827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027875996
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1371/journal.pone.0036674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026716629
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1371/journal.pone.0048305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034004786
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1371/journal.pone.0127750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024110197
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1371/journal.pone.0130855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020636330
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1371/journal.pone.0136803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048510861
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1534/g3.115.021105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036270795
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1534/g3.116.027524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046560774
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1534/genetics.107.081190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017395594
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1534/genetics.112.143313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034867521
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1534/genetics.113.150029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025094141
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1534/genetics.114.171322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041638300
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.17660/actahortic.2005.667.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068409398
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.17660/actahortic.2008.795.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068417197
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.17660/actahortic.2008.795.136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068417238
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.17660/actahortic.2010.859.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068421578
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.17660/actahortic.2014.1020.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068431468
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.21273/horttech.15.4.0886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110654854
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.2135/cropsci1964.0011183x000400050021x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069013473
    372 rdf:type schema:CreativeWork
    373 https://doi.org/10.2135/cropsci2005.07-0193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069029572
    374 rdf:type schema:CreativeWork
    375 https://doi.org/10.2135/cropsci2006.08.0540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069030108
    376 rdf:type schema:CreativeWork
    377 https://doi.org/10.2135/cropsci2011.06.0299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069031548
    378 rdf:type schema:CreativeWork
    379 https://doi.org/10.2135/cropsci2014.06.0415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069032445
    380 rdf:type schema:CreativeWork
    381 https://doi.org/10.2135/cropsci2015.06.0375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069032738
    382 rdf:type schema:CreativeWork
    383 https://doi.org/10.2307/2529430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069975084
    384 rdf:type schema:CreativeWork
    385 https://doi.org/10.2527/jas1985.601111x schema:sameAs https://app.dimensions.ai/details/publication/pub.1070900982
    386 rdf:type schema:CreativeWork
    387 https://doi.org/10.3168/jds.2007-0980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077799697
    388 rdf:type schema:CreativeWork
    389 https://doi.org/10.3168/jds.s0022-0302(77)83935-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086083291
    390 rdf:type schema:CreativeWork
    391 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
    392 schema:name University of Queensland, Queensland Alliance for Agriculture and Food Innovation, 4072, Brisbane, QLD, Australia
    393 rdf:type schema:Organization
    394 https://www.grid.ac/institutes/grid.17088.36 schema:alternateName Michigan State University
    395 schema:name Department of Horticulture, Michigan State University, 48824, East Lansing, MI, USA
    396 rdf:type schema:Organization
    397 https://www.grid.ac/institutes/grid.27859.31 schema:alternateName Plant & Food Research
    398 schema:name The New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay Research Centre, 4130, Hastings, New Zealand
    399 rdf:type schema:Organization
    400 https://www.grid.ac/institutes/grid.30064.31 schema:alternateName Washington State University
    401 schema:name Department of Horticulture, Washington State University, 99164, Pullman, WA, USA
    402 Department of Horticulture, Washington State University, Irrigated Agriculture Research and Extension Center, 24106N Bunn Road, 99350, Prosser, WA, USA
    403 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...