Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-26

AUTHORS

Natsuki Moriguchi, Kentaro Uchiyama, Ryutaro Miyagi, Etsuko Moritsuka, Aya Takahashi, Koichiro Tamura, Yoshihiko Tsumura, Kosuke M. Teshima, Hidenori Tachida, Junko Kusumi

ABSTRACT

The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation. More... »

PAGES

1-13

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y

DOI

http://dx.doi.org/10.1038/s41437-019-0198-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112394956

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30809077


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moriguchi", 
        "givenName": "Natsuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Forestry and Forest Products Research Institute", 
          "id": "https://www.grid.ac/institutes/grid.417935.d", 
          "name": [
            "Forestry and Forest Products Research Institute, Matsunosato 1, Ibaraki, 305-8687, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uchiyama", 
        "givenName": "Kentaro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyagi", 
        "givenName": "Ryutaro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moritsuka", 
        "givenName": "Etsuko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takahashi", 
        "givenName": "Aya", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamura", 
        "givenName": "Koichiro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsumura", 
        "givenName": "Yoshihiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teshima", 
        "givenName": "Kosuke M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tachida", 
        "givenName": "Hidenori", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyushu University", 
          "id": "https://www.grid.ac/institutes/grid.177174.3", 
          "name": [
            "Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kusumi", 
        "givenName": "Junko", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2009.02591.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001719382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2009.02591.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001719382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11295-012-0508-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006633314", 
          "https://doi.org/10.1007/s11295-012-0508-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1003905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007037612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/gbe/evr106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010093653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1266/jjg.67.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010444834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1266/jjg.67.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010444834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1600046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010885256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1004434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011485119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1508/cytologia.66.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012244608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12686-011-9548-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014160842", 
          "https://doi.org/10.1007/s12686-011-9548-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msu136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015932556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40645-015-0045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018009164", 
          "https://doi.org/10.1186/s40645-015-0045-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s40645-015-0045-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018009164", 
          "https://doi.org/10.1186/s40645-015-0045-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1755-0998.12387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019918862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11295-014-0755-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020114320", 
          "https://doi.org/10.1007/s11295-014-0755-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020645983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020645983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11295-005-0023-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727284", 
          "https://doi.org/10.1007/s11295-005-0023-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11295-005-0023-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020727284", 
          "https://doi.org/10.1007/s11295-005-0023-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021484173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5681207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021863999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genet.39.073003.112420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022487418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2008.01.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029629408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.092221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030787718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.108.092221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030787718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0033-5894(86)90088-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031264005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2008.04059.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033034009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-008-9140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033602406", 
          "https://doi.org/10.1007/s00239-008-9140-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00239-008-9140-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033602406", 
          "https://doi.org/10.1007/s00239-008-9140-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10265-005-0198-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035190888", 
          "https://doi.org/10.1007/s10265-005-0198-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10265-005-0198-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035190888", 
          "https://doi.org/10.1007/s10265-005-0198-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.065102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035390394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.106.065102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035390394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mcu197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035495177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2012.0294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037050383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21250-5_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038116926", 
          "https://doi.org/10.1007/978-3-642-21250-5_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21250-5_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038116926", 
          "https://doi.org/10.1007/978-3-642-21250-5_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1002967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042395285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep16963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043878103", 
          "https://doi.org/10.1038/srep16963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.013896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043938109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/g3.114.013896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043938109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1213621109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044547162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045105386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045105386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10265-009-0217-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046405404", 
          "https://doi.org/10.1007/s10265-009-0217-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10265-009-0217-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046405404", 
          "https://doi.org/10.1007/s10265-009-0217-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2012.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046446874", 
          "https://doi.org/10.1038/hdy.2012.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/mec.13390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048027502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1266/ggs.14-00079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050659237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050846997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053657243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.107.072652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053657243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1937247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069661243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075335892", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076385473", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078957195", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2018.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100859202"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-26", 
    "datePublishedReg": "2019-02-26", 
    "description": "The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41437-019-0198-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6536345", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5901561", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1017442", 
        "issn": [
          "0018-067X", 
          "1365-2540"
        ], 
        "name": "Heredity", 
        "type": "Periodical"
      }
    ], 
    "name": "Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a968793b6a29b1d52e078e3d2f328b5901fbcb7a44d55e76eb6d0394e5951640"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30809077"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0373007"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41437-019-0198-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112394956"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41437-019-0198-y", 
      "https://app.dimensions.ai/details/publication/pub.1112394956"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41437-019-0198-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'


 

This table displays all metadata directly associated to this object as RDF triples.

279 TRIPLES      21 PREDICATES      73 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41437-019-0198-y schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nb204f6d2a8c94f62b0abcee97a549665
4 schema:citation sg:pub.10.1007/978-3-642-21250-5_3
5 sg:pub.10.1007/s00239-008-9140-2
6 sg:pub.10.1007/s10265-005-0198-2
7 sg:pub.10.1007/s10265-009-0217-9
8 sg:pub.10.1007/s11295-005-0023-z
9 sg:pub.10.1007/s11295-012-0508-5
10 sg:pub.10.1007/s11295-014-0755-8
11 sg:pub.10.1007/s12686-011-9548-7
12 sg:pub.10.1038/hdy.2012.50
13 sg:pub.10.1038/srep16963
14 sg:pub.10.1186/s40645-015-0045-6
15 https://app.dimensions.ai/details/publication/pub.1074647594
16 https://app.dimensions.ai/details/publication/pub.1075335892
17 https://app.dimensions.ai/details/publication/pub.1076385473
18 https://app.dimensions.ai/details/publication/pub.1078957195
19 https://doi.org/10.1016/0033-5894(86)90088-8
20 https://doi.org/10.1016/j.foreco.2008.01.055
21 https://doi.org/10.1016/j.gloplacha.2018.02.001
22 https://doi.org/10.1073/pnas.1213621109
23 https://doi.org/10.1093/aob/mcu197
24 https://doi.org/10.1093/bioinformatics/btp187
25 https://doi.org/10.1093/bioinformatics/btp324
26 https://doi.org/10.1093/bioinformatics/btp352
27 https://doi.org/10.1093/bioinformatics/bts606
28 https://doi.org/10.1093/gbe/evr106
29 https://doi.org/10.1093/molbev/msu136
30 https://doi.org/10.1098/rsta.2012.0294
31 https://doi.org/10.1101/gr.5681207
32 https://doi.org/10.1111/1755-0998.12387
33 https://doi.org/10.1111/j.1365-294x.2005.02553.x
34 https://doi.org/10.1111/j.1365-294x.2008.04059.x
35 https://doi.org/10.1111/j.1755-0998.2009.02591.x
36 https://doi.org/10.1111/j.1755-0998.2010.02847.x
37 https://doi.org/10.1111/mec.13390
38 https://doi.org/10.1146/annurev.genet.39.073003.112420
39 https://doi.org/10.1266/ggs.14-00079
40 https://doi.org/10.1266/jjg.67.299
41 https://doi.org/10.1371/journal.pgen.1002967
42 https://doi.org/10.1371/journal.pgen.1003905
43 https://doi.org/10.1371/journal.pgen.1004434
44 https://doi.org/10.1508/cytologia.66.307
45 https://doi.org/10.1534/g3.114.013896
46 https://doi.org/10.1534/genetics.106.065102
47 https://doi.org/10.1534/genetics.107.072652
48 https://doi.org/10.1534/genetics.108.092221
49 https://doi.org/10.2307/1937247
50 https://doi.org/10.3732/ajb.1600046
51 schema:datePublished 2019-02-26
52 schema:datePublishedReg 2019-02-26
53 schema:description The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf sg:journal.1017442
58 schema:name Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing
59 schema:pagination 1-13
60 schema:productId N29efe66f092d44d1a1464ba91c73da13
61 N6cbff38d648f40e895764659859a5818
62 N6ff7ef9a84af430e9592189361a5195e
63 N77feb9710cac436688e6cf50393ef659
64 N833a5e56c12e4e0dae0ffc1bd8747c0b
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112394956
66 https://doi.org/10.1038/s41437-019-0198-y
67 schema:sdDatePublished 2019-04-11T09:53
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N9f0449129bfb44ddaaa597bc43c82cbe
70 schema:url https://www.nature.com/articles/s41437-019-0198-y
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N035801b179fb47baaf2c9559083049e6 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
75 schema:familyName Teshima
76 schema:givenName Kosuke M.
77 rdf:type schema:Person
78 N1b32950ed24942548b51141ca7dabc9c schema:affiliation https://www.grid.ac/institutes/grid.265074.2
79 schema:familyName Miyagi
80 schema:givenName Ryutaro
81 rdf:type schema:Person
82 N23ee963f1c89405daef4b2ec5ef9e2a1 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
83 schema:familyName Takahashi
84 schema:givenName Aya
85 rdf:type schema:Person
86 N281c4260e0ae43e5884aa6b14a3c3304 rdf:first N694108d73bce447f85c9450382c303de
87 rdf:rest Nded35aa36b6143ccbf42e7205c11124a
88 N29efe66f092d44d1a1464ba91c73da13 schema:name readcube_id
89 schema:value a968793b6a29b1d52e078e3d2f328b5901fbcb7a44d55e76eb6d0394e5951640
90 rdf:type schema:PropertyValue
91 N3848a5bb50404500b3f847968794d3c0 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
92 schema:familyName Kusumi
93 schema:givenName Junko
94 rdf:type schema:Person
95 N4305ebd466c24294a1b9259c55ac70c2 rdf:first Ne1f03824e6c44730a8d7615651c564a2
96 rdf:rest N281c4260e0ae43e5884aa6b14a3c3304
97 N49484ea11ccf4e88896d220864b90557 schema:affiliation https://www.grid.ac/institutes/grid.417935.d
98 schema:familyName Uchiyama
99 schema:givenName Kentaro
100 rdf:type schema:Person
101 N5157275e11984ccbb728c81ea53f4156 rdf:first Nd8f7b54f1beb409caa45d5149ad92ee7
102 rdf:rest N7a040478ecb04ee5b12daddfe724d946
103 N694108d73bce447f85c9450382c303de schema:affiliation https://www.grid.ac/institutes/grid.20515.33
104 schema:familyName Tsumura
105 schema:givenName Yoshihiko
106 rdf:type schema:Person
107 N6cbff38d648f40e895764659859a5818 schema:name doi
108 schema:value 10.1038/s41437-019-0198-y
109 rdf:type schema:PropertyValue
110 N6ff7ef9a84af430e9592189361a5195e schema:name pubmed_id
111 schema:value 30809077
112 rdf:type schema:PropertyValue
113 N77feb9710cac436688e6cf50393ef659 schema:name dimensions_id
114 schema:value pub.1112394956
115 rdf:type schema:PropertyValue
116 N7a040478ecb04ee5b12daddfe724d946 rdf:first N23ee963f1c89405daef4b2ec5ef9e2a1
117 rdf:rest N4305ebd466c24294a1b9259c55ac70c2
118 N833a5e56c12e4e0dae0ffc1bd8747c0b schema:name nlm_unique_id
119 schema:value 0373007
120 rdf:type schema:PropertyValue
121 N850b4fab809944a29c54fea3fb87c805 rdf:first N1b32950ed24942548b51141ca7dabc9c
122 rdf:rest N5157275e11984ccbb728c81ea53f4156
123 N92e66f7f8b53446ebba88913295d4dc4 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
124 schema:familyName Tachida
125 schema:givenName Hidenori
126 rdf:type schema:Person
127 N9f0449129bfb44ddaaa597bc43c82cbe schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 Nb204f6d2a8c94f62b0abcee97a549665 rdf:first Nc3df2045d7b6434ebd5fc9fe747d5f18
130 rdf:rest Nbcfa5d0d8a3b486985b342472341af20
131 Nbcfa5d0d8a3b486985b342472341af20 rdf:first N49484ea11ccf4e88896d220864b90557
132 rdf:rest N850b4fab809944a29c54fea3fb87c805
133 Nc3df2045d7b6434ebd5fc9fe747d5f18 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
134 schema:familyName Moriguchi
135 schema:givenName Natsuki
136 rdf:type schema:Person
137 Nd343c7d370504b09acaed824c21e8b26 rdf:first N3848a5bb50404500b3f847968794d3c0
138 rdf:rest rdf:nil
139 Nd8f7b54f1beb409caa45d5149ad92ee7 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
140 schema:familyName Moritsuka
141 schema:givenName Etsuko
142 rdf:type schema:Person
143 Ndc3b4c2c6e664404bb60c5b7730ab90e rdf:first N92e66f7f8b53446ebba88913295d4dc4
144 rdf:rest Nd343c7d370504b09acaed824c21e8b26
145 Nded35aa36b6143ccbf42e7205c11124a rdf:first N035801b179fb47baaf2c9559083049e6
146 rdf:rest Ndc3b4c2c6e664404bb60c5b7730ab90e
147 Ne1f03824e6c44730a8d7615651c564a2 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
148 schema:familyName Tamura
149 schema:givenName Koichiro
150 rdf:type schema:Person
151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
152 schema:name Biological Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
155 schema:name Genetics
156 rdf:type schema:DefinedTerm
157 sg:grant.5901561 http://pending.schema.org/fundedItem sg:pub.10.1038/s41437-019-0198-y
158 rdf:type schema:MonetaryGrant
159 sg:grant.6536345 http://pending.schema.org/fundedItem sg:pub.10.1038/s41437-019-0198-y
160 rdf:type schema:MonetaryGrant
161 sg:journal.1017442 schema:issn 0018-067X
162 1365-2540
163 schema:name Heredity
164 rdf:type schema:Periodical
165 sg:pub.10.1007/978-3-642-21250-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038116926
166 https://doi.org/10.1007/978-3-642-21250-5_3
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00239-008-9140-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033602406
169 https://doi.org/10.1007/s00239-008-9140-2
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s10265-005-0198-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035190888
172 https://doi.org/10.1007/s10265-005-0198-2
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s10265-009-0217-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046405404
175 https://doi.org/10.1007/s10265-009-0217-9
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11295-005-0023-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020727284
178 https://doi.org/10.1007/s11295-005-0023-z
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11295-012-0508-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006633314
181 https://doi.org/10.1007/s11295-012-0508-5
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11295-014-0755-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020114320
184 https://doi.org/10.1007/s11295-014-0755-8
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s12686-011-9548-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160842
187 https://doi.org/10.1007/s12686-011-9548-7
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/hdy.2012.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046446874
190 https://doi.org/10.1038/hdy.2012.50
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/srep16963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043878103
193 https://doi.org/10.1038/srep16963
194 rdf:type schema:CreativeWork
195 sg:pub.10.1186/s40645-015-0045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018009164
196 https://doi.org/10.1186/s40645-015-0045-6
197 rdf:type schema:CreativeWork
198 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
199 https://app.dimensions.ai/details/publication/pub.1075335892 schema:CreativeWork
200 https://app.dimensions.ai/details/publication/pub.1076385473 schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1078957195 schema:CreativeWork
202 https://doi.org/10.1016/0033-5894(86)90088-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031264005
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.foreco.2008.01.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029629408
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.gloplacha.2018.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100859202
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1073/pnas.1213621109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044547162
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1093/aob/mcu197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035495177
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1093/bioinformatics/btp187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484173
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1093/bioinformatics/bts606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846997
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/gbe/evr106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010093653
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/molbev/msu136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015932556
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1098/rsta.2012.0294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037050383
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1101/gr.5681207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021863999
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/1755-0998.12387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019918862
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1111/j.1365-294x.2005.02553.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045105386
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1111/j.1365-294x.2008.04059.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033034009
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1111/j.1755-0998.2009.02591.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001719382
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1111/j.1755-0998.2010.02847.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020645983
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1111/mec.13390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048027502
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1146/annurev.genet.39.073003.112420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022487418
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1266/ggs.14-00079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050659237
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1266/jjg.67.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010444834
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1371/journal.pgen.1002967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042395285
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1371/journal.pgen.1003905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007037612
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1371/journal.pgen.1004434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011485119
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1508/cytologia.66.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012244608
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1534/g3.114.013896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043938109
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1534/genetics.106.065102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035390394
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1534/genetics.107.072652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053657243
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1534/genetics.108.092221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030787718
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2307/1937247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069661243
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3732/ajb.1600046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010885256
265 rdf:type schema:CreativeWork
266 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
267 schema:name Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
268 Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
269 Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.20515.33 schema:alternateName University of Tsukuba
272 schema:name Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Tsukuba, Japan
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.265074.2 schema:alternateName Tokyo Metropolitan University
275 schema:name Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan
276 rdf:type schema:Organization
277 https://www.grid.ac/institutes/grid.417935.d schema:alternateName Forestry and Forest Products Research Institute
278 schema:name Forestry and Forest Products Research Institute, Matsunosato 1, Ibaraki, 305-8687, Tsukuba, Japan
279 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...