Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-26

AUTHORS

Natsuki Moriguchi, Kentaro Uchiyama, Ryutaro Miyagi, Etsuko Moritsuka, Aya Takahashi, Koichiro Tamura, Yoshihiko Tsumura, Kosuke M. Teshima, Hidenori Tachida, Junko Kusumi

ABSTRACT

The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation. More... »

PAGES

1-13

References to SciGraph publications

  • 2015-12. The Pliocene to recent history of the Kuroshio and Tsushima Currents: a multi-proxy approach in PROGRESS IN EARTH AND PLANETARY SCIENCE
  • 2005-04. Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period in JOURNAL OF PLANT RESEARCH
  • 2005-12. Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers in TREE GENETICS & GENOMES
  • 2015-12. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform in SCIENTIFIC REPORTS
  • 2014-10. Demographic history of a common pioneer tree, Zanthoxylum ailanthoides, reconstructed using isolation-with-migration model in TREE GENETICS & GENOMES
  • 2009-05. Genetic divergence in nuclear genomes between populations of Fagus crenata along the Japan Sea and Pacific sides of Japan in JOURNAL OF PLANT RESEARCH
  • 2012-12. Genome scanning for detecting adaptive genes along environmental gradients in the Japanese conifer, Cryptomeria japonica in HEREDITY
  • 2011-07-08. Cryptomeria in WILD CROP RELATIVES: GENOMIC AND BREEDING RESOURCES
  • 2008-08. Adaptive and Slightly Deleterious Evolution in a Conifer, Cryptomeria japonica in JOURNAL OF MOLECULAR EVOLUTION
  • 2012-12. Single nucleotide polymorphisms in Cryptomeria japonica: their discovery and validation for genome mapping and diversity studies in TREE GENETICS & GENOMES
  • 2012-06. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method in CONSERVATION GENETICS RESOURCES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y

    DOI

    http://dx.doi.org/10.1038/s41437-019-0198-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112394956

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30809077


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Kyushu University", 
              "id": "https://www.grid.ac/institutes/grid.177174.3", 
              "name": [
                "Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moriguchi", 
            "givenName": "Natsuki", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Forestry and Forest Products Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.417935.d", 
              "name": [
                "Forestry and Forest Products Research Institute, Matsunosato 1, Ibaraki, 305-8687, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uchiyama", 
            "givenName": "Kentaro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo Metropolitan University", 
              "id": "https://www.grid.ac/institutes/grid.265074.2", 
              "name": [
                "Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miyagi", 
            "givenName": "Ryutaro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kyushu University", 
              "id": "https://www.grid.ac/institutes/grid.177174.3", 
              "name": [
                "Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moritsuka", 
            "givenName": "Etsuko", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo Metropolitan University", 
              "id": "https://www.grid.ac/institutes/grid.265074.2", 
              "name": [
                "Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Takahashi", 
            "givenName": "Aya", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tokyo Metropolitan University", 
              "id": "https://www.grid.ac/institutes/grid.265074.2", 
              "name": [
                "Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tamura", 
            "givenName": "Koichiro", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Tsukuba", 
              "id": "https://www.grid.ac/institutes/grid.20515.33", 
              "name": [
                "Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsumura", 
            "givenName": "Yoshihiko", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kyushu University", 
              "id": "https://www.grid.ac/institutes/grid.177174.3", 
              "name": [
                "Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teshima", 
            "givenName": "Kosuke M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kyushu University", 
              "id": "https://www.grid.ac/institutes/grid.177174.3", 
              "name": [
                "Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tachida", 
            "givenName": "Hidenori", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kyushu University", 
              "id": "https://www.grid.ac/institutes/grid.177174.3", 
              "name": [
                "Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kusumi", 
            "givenName": "Junko", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2009.02591.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001719382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2009.02591.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001719382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-012-0508-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006633314", 
              "https://doi.org/10.1007/s11295-012-0508-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1003905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007037612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/gbe/evr106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010093653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1266/jjg.67.299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010444834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1266/jjg.67.299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010444834"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3732/ajb.1600046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010885256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1004434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011485119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1508/cytologia.66.307", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012244608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12686-011-9548-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014160842", 
              "https://doi.org/10.1007/s12686-011-9548-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/molbev/msu136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015932556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40645-015-0045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018009164", 
              "https://doi.org/10.1186/s40645-015-0045-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40645-015-0045-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018009164", 
              "https://doi.org/10.1186/s40645-015-0045-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1755-0998.12387", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019918862"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-014-0755-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020114320", 
              "https://doi.org/10.1007/s11295-014-0755-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-005-0023-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020727284", 
              "https://doi.org/10.1007/s11295-005-0023-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11295-005-0023-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020727284", 
              "https://doi.org/10.1007/s11295-005-0023-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021484173"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.5681207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021863999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.genet.39.073003.112420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022487418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023014918"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.foreco.2008.01.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029629408"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.092221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030787718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.108.092221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030787718"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0033-5894(86)90088-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031264005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2008.04059.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033034009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-008-9140-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033602406", 
              "https://doi.org/10.1007/s00239-008-9140-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-008-9140-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033602406", 
              "https://doi.org/10.1007/s00239-008-9140-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10265-005-0198-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035190888", 
              "https://doi.org/10.1007/s10265-005-0198-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10265-005-0198-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035190888", 
              "https://doi.org/10.1007/s10265-005-0198-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.065102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035390394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.106.065102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035390394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/aob/mcu197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035495177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rsta.2012.0294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037050383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21250-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038116926", 
              "https://doi.org/10.1007/978-3-642-21250-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-21250-5_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038116926", 
              "https://doi.org/10.1007/978-3-642-21250-5_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1002967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042395285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep16963", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043878103", 
              "https://doi.org/10.1038/srep16963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.013896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043938109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.114.013896", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043938109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1213621109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044547162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-294x.2005.02553.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045105386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10265-009-0217-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046405404", 
              "https://doi.org/10.1007/s10265-009-0217-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10265-009-0217-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046405404", 
              "https://doi.org/10.1007/s10265-009-0217-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.2012.50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046446874", 
              "https://doi.org/10.1038/hdy.2012.50"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/mec.13390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048027502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1266/ggs.14-00079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050659237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050846997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.072652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053657243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/genetics.107.072652", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053657243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1937247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069661243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074647594", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1075335892", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076385473", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1078957195", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gloplacha.2018.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100859202"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02-26", 
        "datePublishedReg": "2019-02-26", 
        "description": "The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41437-019-0198-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6536345", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5901561", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1017442", 
            "issn": [
              "0018-067X", 
              "1365-2540"
            ], 
            "name": "Heredity", 
            "type": "Periodical"
          }
        ], 
        "name": "Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a968793b6a29b1d52e078e3d2f328b5901fbcb7a44d55e76eb6d0394e5951640"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30809077"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0373007"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41437-019-0198-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112394956"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41437-019-0198-y", 
          "https://app.dimensions.ai/details/publication/pub.1112394956"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89793_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41437-019-0198-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41437-019-0198-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    279 TRIPLES      21 PREDICATES      73 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41437-019-0198-y schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N1146fd4392ad4e2e98cf9032b5388ab0
    4 schema:citation sg:pub.10.1007/978-3-642-21250-5_3
    5 sg:pub.10.1007/s00239-008-9140-2
    6 sg:pub.10.1007/s10265-005-0198-2
    7 sg:pub.10.1007/s10265-009-0217-9
    8 sg:pub.10.1007/s11295-005-0023-z
    9 sg:pub.10.1007/s11295-012-0508-5
    10 sg:pub.10.1007/s11295-014-0755-8
    11 sg:pub.10.1007/s12686-011-9548-7
    12 sg:pub.10.1038/hdy.2012.50
    13 sg:pub.10.1038/srep16963
    14 sg:pub.10.1186/s40645-015-0045-6
    15 https://app.dimensions.ai/details/publication/pub.1074647594
    16 https://app.dimensions.ai/details/publication/pub.1075335892
    17 https://app.dimensions.ai/details/publication/pub.1076385473
    18 https://app.dimensions.ai/details/publication/pub.1078957195
    19 https://doi.org/10.1016/0033-5894(86)90088-8
    20 https://doi.org/10.1016/j.foreco.2008.01.055
    21 https://doi.org/10.1016/j.gloplacha.2018.02.001
    22 https://doi.org/10.1073/pnas.1213621109
    23 https://doi.org/10.1093/aob/mcu197
    24 https://doi.org/10.1093/bioinformatics/btp187
    25 https://doi.org/10.1093/bioinformatics/btp324
    26 https://doi.org/10.1093/bioinformatics/btp352
    27 https://doi.org/10.1093/bioinformatics/bts606
    28 https://doi.org/10.1093/gbe/evr106
    29 https://doi.org/10.1093/molbev/msu136
    30 https://doi.org/10.1098/rsta.2012.0294
    31 https://doi.org/10.1101/gr.5681207
    32 https://doi.org/10.1111/1755-0998.12387
    33 https://doi.org/10.1111/j.1365-294x.2005.02553.x
    34 https://doi.org/10.1111/j.1365-294x.2008.04059.x
    35 https://doi.org/10.1111/j.1755-0998.2009.02591.x
    36 https://doi.org/10.1111/j.1755-0998.2010.02847.x
    37 https://doi.org/10.1111/mec.13390
    38 https://doi.org/10.1146/annurev.genet.39.073003.112420
    39 https://doi.org/10.1266/ggs.14-00079
    40 https://doi.org/10.1266/jjg.67.299
    41 https://doi.org/10.1371/journal.pgen.1002967
    42 https://doi.org/10.1371/journal.pgen.1003905
    43 https://doi.org/10.1371/journal.pgen.1004434
    44 https://doi.org/10.1508/cytologia.66.307
    45 https://doi.org/10.1534/g3.114.013896
    46 https://doi.org/10.1534/genetics.106.065102
    47 https://doi.org/10.1534/genetics.107.072652
    48 https://doi.org/10.1534/genetics.108.092221
    49 https://doi.org/10.2307/1937247
    50 https://doi.org/10.3732/ajb.1600046
    51 schema:datePublished 2019-02-26
    52 schema:datePublishedReg 2019-02-26
    53 schema:description The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf sg:journal.1017442
    58 schema:name Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing
    59 schema:pagination 1-13
    60 schema:productId N04ef62b0ac484f1ba4bc288da4726951
    61 N57ea9fb5a04a4a7e9cbf42f30b8fdbc2
    62 N689ab93f0105447cb54246d21231cb73
    63 N84358b29b9ae4f7f82e811edf97f3be3
    64 Nabf64e2579b749f99adf3fe80d090463
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112394956
    66 https://doi.org/10.1038/s41437-019-0198-y
    67 schema:sdDatePublished 2019-04-11T09:53
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher Nc6481b9500784c4b9527bfa0acf25a0f
    70 schema:url https://www.nature.com/articles/s41437-019-0198-y
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N04ef62b0ac484f1ba4bc288da4726951 schema:name pubmed_id
    75 schema:value 30809077
    76 rdf:type schema:PropertyValue
    77 N0e48f4e77c6b47e5a0dacdcc2a0736b2 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
    78 schema:familyName Takahashi
    79 schema:givenName Aya
    80 rdf:type schema:Person
    81 N0e5cfd028bd2477c8dcd7b53212e3760 rdf:first N6239b29715204777820c65a91b7b8a1e
    82 rdf:rest Ncae42a1b363241b487c34aa20475f91d
    83 N1146fd4392ad4e2e98cf9032b5388ab0 rdf:first N2dd0e4dd02194ea4b00fa34b3c98c8ae
    84 rdf:rest N894421b2a7ff4a01a82628d226918d78
    85 N126b926f662a49c9a768bdc7cef26537 rdf:first Ndd62d9439ec64c49a3427bcff7bfecf3
    86 rdf:rest N0e5cfd028bd2477c8dcd7b53212e3760
    87 N164f1e70ddda45f0aab3c3faf9ac84fa schema:affiliation https://www.grid.ac/institutes/grid.265074.2
    88 schema:familyName Tamura
    89 schema:givenName Koichiro
    90 rdf:type schema:Person
    91 N29636c26068445c2bd2152fe70637661 schema:affiliation https://www.grid.ac/institutes/grid.417935.d
    92 schema:familyName Uchiyama
    93 schema:givenName Kentaro
    94 rdf:type schema:Person
    95 N2dd0e4dd02194ea4b00fa34b3c98c8ae schema:affiliation https://www.grid.ac/institutes/grid.177174.3
    96 schema:familyName Moriguchi
    97 schema:givenName Natsuki
    98 rdf:type schema:Person
    99 N4cfbc4aa28e34783bae1ff73c099b46d schema:affiliation https://www.grid.ac/institutes/grid.20515.33
    100 schema:familyName Tsumura
    101 schema:givenName Yoshihiko
    102 rdf:type schema:Person
    103 N57ea9fb5a04a4a7e9cbf42f30b8fdbc2 schema:name doi
    104 schema:value 10.1038/s41437-019-0198-y
    105 rdf:type schema:PropertyValue
    106 N6239b29715204777820c65a91b7b8a1e schema:affiliation https://www.grid.ac/institutes/grid.177174.3
    107 schema:familyName Tachida
    108 schema:givenName Hidenori
    109 rdf:type schema:Person
    110 N6692b6a9ce574dbabb06541d259288e2 rdf:first N164f1e70ddda45f0aab3c3faf9ac84fa
    111 rdf:rest N90e1d2a7f4df4e978848b1b8e7b8d3f6
    112 N689ab93f0105447cb54246d21231cb73 schema:name nlm_unique_id
    113 schema:value 0373007
    114 rdf:type schema:PropertyValue
    115 N751b9331406f4728b8a79b3bb08713c3 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
    116 schema:familyName Miyagi
    117 schema:givenName Ryutaro
    118 rdf:type schema:Person
    119 N84358b29b9ae4f7f82e811edf97f3be3 schema:name readcube_id
    120 schema:value a968793b6a29b1d52e078e3d2f328b5901fbcb7a44d55e76eb6d0394e5951640
    121 rdf:type schema:PropertyValue
    122 N8872e5f2278d4661aec8d55aa808bbdc rdf:first N0e48f4e77c6b47e5a0dacdcc2a0736b2
    123 rdf:rest N6692b6a9ce574dbabb06541d259288e2
    124 N894421b2a7ff4a01a82628d226918d78 rdf:first N29636c26068445c2bd2152fe70637661
    125 rdf:rest Nf41ff731d7f4453eaeaa78daad6260a3
    126 N90e1d2a7f4df4e978848b1b8e7b8d3f6 rdf:first N4cfbc4aa28e34783bae1ff73c099b46d
    127 rdf:rest N126b926f662a49c9a768bdc7cef26537
    128 N91a70c14486a4e6db97f5f608ddcc067 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
    129 schema:familyName Kusumi
    130 schema:givenName Junko
    131 rdf:type schema:Person
    132 Na2e54fa63c8e4079961538f1186d09e4 rdf:first Nf7827ab7dba64ddcb072e76e58c2642c
    133 rdf:rest N8872e5f2278d4661aec8d55aa808bbdc
    134 Nabf64e2579b749f99adf3fe80d090463 schema:name dimensions_id
    135 schema:value pub.1112394956
    136 rdf:type schema:PropertyValue
    137 Nc6481b9500784c4b9527bfa0acf25a0f schema:name Springer Nature - SN SciGraph project
    138 rdf:type schema:Organization
    139 Ncae42a1b363241b487c34aa20475f91d rdf:first N91a70c14486a4e6db97f5f608ddcc067
    140 rdf:rest rdf:nil
    141 Ndd62d9439ec64c49a3427bcff7bfecf3 schema:affiliation https://www.grid.ac/institutes/grid.177174.3
    142 schema:familyName Teshima
    143 schema:givenName Kosuke M.
    144 rdf:type schema:Person
    145 Nf41ff731d7f4453eaeaa78daad6260a3 rdf:first N751b9331406f4728b8a79b3bb08713c3
    146 rdf:rest Na2e54fa63c8e4079961538f1186d09e4
    147 Nf7827ab7dba64ddcb072e76e58c2642c schema:affiliation https://www.grid.ac/institutes/grid.177174.3
    148 schema:familyName Moritsuka
    149 schema:givenName Etsuko
    150 rdf:type schema:Person
    151 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Biological Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Genetics
    156 rdf:type schema:DefinedTerm
    157 sg:grant.5901561 http://pending.schema.org/fundedItem sg:pub.10.1038/s41437-019-0198-y
    158 rdf:type schema:MonetaryGrant
    159 sg:grant.6536345 http://pending.schema.org/fundedItem sg:pub.10.1038/s41437-019-0198-y
    160 rdf:type schema:MonetaryGrant
    161 sg:journal.1017442 schema:issn 0018-067X
    162 1365-2540
    163 schema:name Heredity
    164 rdf:type schema:Periodical
    165 sg:pub.10.1007/978-3-642-21250-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038116926
    166 https://doi.org/10.1007/978-3-642-21250-5_3
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00239-008-9140-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033602406
    169 https://doi.org/10.1007/s00239-008-9140-2
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s10265-005-0198-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035190888
    172 https://doi.org/10.1007/s10265-005-0198-2
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s10265-009-0217-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046405404
    175 https://doi.org/10.1007/s10265-009-0217-9
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11295-005-0023-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020727284
    178 https://doi.org/10.1007/s11295-005-0023-z
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11295-012-0508-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006633314
    181 https://doi.org/10.1007/s11295-012-0508-5
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11295-014-0755-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020114320
    184 https://doi.org/10.1007/s11295-014-0755-8
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s12686-011-9548-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014160842
    187 https://doi.org/10.1007/s12686-011-9548-7
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/hdy.2012.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046446874
    190 https://doi.org/10.1038/hdy.2012.50
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/srep16963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043878103
    193 https://doi.org/10.1038/srep16963
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1186/s40645-015-0045-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018009164
    196 https://doi.org/10.1186/s40645-015-0045-6
    197 rdf:type schema:CreativeWork
    198 https://app.dimensions.ai/details/publication/pub.1074647594 schema:CreativeWork
    199 https://app.dimensions.ai/details/publication/pub.1075335892 schema:CreativeWork
    200 https://app.dimensions.ai/details/publication/pub.1076385473 schema:CreativeWork
    201 https://app.dimensions.ai/details/publication/pub.1078957195 schema:CreativeWork
    202 https://doi.org/10.1016/0033-5894(86)90088-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031264005
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1016/j.foreco.2008.01.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029629408
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1016/j.gloplacha.2018.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100859202
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1073/pnas.1213621109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044547162
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1093/aob/mcu197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035495177
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1093/bioinformatics/btp187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484173
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1093/bioinformatics/bts606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050846997
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1093/gbe/evr106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010093653
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1093/molbev/msu136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015932556
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1098/rsta.2012.0294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037050383
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1101/gr.5681207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021863999
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1111/1755-0998.12387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019918862
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1111/j.1365-294x.2005.02553.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045105386
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1111/j.1365-294x.2008.04059.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033034009
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1111/j.1755-0998.2009.02591.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001719382
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1111/j.1755-0998.2010.02847.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020645983
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1111/mec.13390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048027502
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1146/annurev.genet.39.073003.112420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022487418
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1266/ggs.14-00079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050659237
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1266/jjg.67.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010444834
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1371/journal.pgen.1002967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042395285
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1371/journal.pgen.1003905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007037612
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1371/journal.pgen.1004434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011485119
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1508/cytologia.66.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012244608
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1534/g3.114.013896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043938109
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1534/genetics.106.065102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035390394
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1534/genetics.107.072652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053657243
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1534/genetics.108.092221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030787718
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.2307/1937247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069661243
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.3732/ajb.1600046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010885256
    265 rdf:type schema:CreativeWork
    266 https://www.grid.ac/institutes/grid.177174.3 schema:alternateName Kyushu University
    267 schema:name Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
    268 Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
    269 Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, 819-0395, Fukuoka, Japan
    270 rdf:type schema:Organization
    271 https://www.grid.ac/institutes/grid.20515.33 schema:alternateName University of Tsukuba
    272 schema:name Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572, Tsukuba, Japan
    273 rdf:type schema:Organization
    274 https://www.grid.ac/institutes/grid.265074.2 schema:alternateName Tokyo Metropolitan University
    275 schema:name Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Tokyo, Japan
    276 rdf:type schema:Organization
    277 https://www.grid.ac/institutes/grid.417935.d schema:alternateName Forestry and Forest Products Research Institute
    278 schema:name Forestry and Forest Products Research Institute, Matsunosato 1, Ibaraki, 305-8687, Tsukuba, Japan
    279 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...