Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-08

AUTHORS

Michael H. Guo, Anthony R. Gregg

ABSTRACT

PURPOSE: Prenatal genetic carrier screening can identify parents at risk of having a child affected by a recessive condition. However, the conditions/genes most appropriate for screening remain a matter of debate. Estimates of carrier rates across genes are needed to guide construction of carrier screening panels. METHOD: We leveraged an exome sequencing database (n = 123,136) to estimate carrier rates across six major ancestries for 415 genes associated with severe recessive conditions. RESULTS: We found that 32.6% (East Asian) to 62.9% (Ashkenazi Jewish) of individuals are variant carriers in at least one of the 415 genes. For couples, screening all 415 genes would identify 0.17-2.52% of couples as being at risk for having a child affected by one of these conditions. Screening just the 40 genes with carrier rate >1.0% would identify more than 76% of these at-risk couples. An ancestry-specific panel designed to capture genes with carrier rates >1.0% would include 5 to 28 genes, while a comparable panethnic panel would include 40 genes. CONCLUSION: Our work guides the design of carrier screening panels and provides data to assist in counseling prospective parents. Our results highlight a high cumulative carrier rate across genes, underscoring the need for careful selection of genes for screening. More... »

PAGES

1-8

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41436-019-0472-7

DOI

http://dx.doi.org/10.1038/s41436-019-0472-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112603375

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30846881


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Carolina Hospitals", 
          "id": "https://www.grid.ac/institutes/grid.429995.a", 
          "name": [
            "Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA", 
            "Department of Medicine, University of North Carolina Hospitals, 25779, Chapel Hill, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Michael H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baylor University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.411588.1", 
          "name": [
            "Department of Obstetrics and Gynecology, Baylor University Medical Center, 75246, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregg", 
        "givenName": "Anthony R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/jama.2016.11139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000760112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/gim.0b013e318188d069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006507920", 
          "https://doi.org/10.1097/gim.0b013e318188d069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1097/gim.0b013e318188d069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006507920", 
          "https://doi.org/10.1097/gim.0b013e318188d069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2016.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021627428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2015.123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022123152", 
          "https://doi.org/10.1038/gim.2015.123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2015.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022229472", 
          "https://doi.org/10.1038/gim.2015.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022281897", 
          "https://doi.org/10.1038/nature19057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022904685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa0809578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024247324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2016.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034718750", 
          "https://doi.org/10.1038/gim.2016.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmsr1406261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043987425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000000666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048668582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000000666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048668582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000001947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083856165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000001947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083856165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2017.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085134019", 
          "https://doi.org/10.1038/gim.2017.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2017.60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085733718", 
          "https://doi.org/10.1038/gim.2017.60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12688/wellcomeopenres.11640.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085785022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/gim.2017.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086113061", 
          "https://doi.org/10.1038/gim.2017.69"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12687-017-0310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090302219", 
          "https://doi.org/10.1007/s12687-017-0310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12687-017-0310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090302219", 
          "https://doi.org/10.1007/s12687-017-0310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12687-017-0310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090302219", 
          "https://doi.org/10.1007/s12687-017-0310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkx1153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092758364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ogc.2017.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100898836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2018.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103903382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2018.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103903382"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-08", 
    "datePublishedReg": "2019-03-08", 
    "description": "PURPOSE: Prenatal genetic carrier screening can identify parents at risk of having a child affected by a recessive condition. However, the conditions/genes most appropriate for screening remain a matter of debate. Estimates of carrier rates across genes are needed to guide construction of carrier screening panels.\nMETHOD: We leveraged an exome sequencing database (n\u2009=\u2009123,136) to estimate carrier rates across six major ancestries for 415 genes associated with severe recessive conditions.\nRESULTS: We found that 32.6% (East Asian) to 62.9% (Ashkenazi Jewish) of individuals are variant carriers in at least one of the 415 genes. For couples, screening all 415 genes would identify 0.17-2.52% of couples as being at risk for having a child affected by one of these conditions. Screening just the 40 genes with carrier rate >1.0% would identify more than 76% of these at-risk couples. An ancestry-specific panel designed to capture genes with carrier rates >1.0% would include 5 to 28 genes, while a comparable panethnic panel would include 40 genes.\nCONCLUSION: Our work guides the design of carrier screening panels and provides data to assist in counseling prospective parents. Our results highlight a high cumulative carrier rate across genes, underscoring the need for careful selection of genes for screening.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41436-019-0472-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1119411", 
        "issn": [
          "1098-3600", 
          "1530-0366"
        ], 
        "name": "Genetics in Medicine", 
        "type": "Periodical"
      }
    ], 
    "name": "Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41436-019-0472-7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "46ba996a692c2d905d367c042ce70cfa6c4b32b6a02a35605d16ecc2a39bc895"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112603375"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9815831"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30846881"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41436-019-0472-7", 
      "https://app.dimensions.ai/details/publication/pub.1112603375"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91459_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41436-019-0472-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41436-019-0472-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41436-019-0472-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41436-019-0472-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41436-019-0472-7'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      21 PREDICATES      46 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41436-019-0472-7 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N24341275343b4fb7b1b031618b8cd7c1
4 schema:citation sg:pub.10.1007/s12687-017-0310-z
5 sg:pub.10.1038/gim.2015.123
6 sg:pub.10.1038/gim.2015.30
7 sg:pub.10.1038/gim.2016.30
8 sg:pub.10.1038/gim.2017.50
9 sg:pub.10.1038/gim.2017.60
10 sg:pub.10.1038/gim.2017.69
11 sg:pub.10.1038/nature19057
12 sg:pub.10.1097/gim.0b013e318188d069
13 https://doi.org/10.1001/jama.2016.11139
14 https://doi.org/10.1016/j.ajhg.2016.03.024
15 https://doi.org/10.1016/j.ajhg.2018.04.004
16 https://doi.org/10.1016/j.ogc.2017.10.005
17 https://doi.org/10.1056/nejmoa0809578
18 https://doi.org/10.1056/nejmsr1406261
19 https://doi.org/10.1093/bioinformatics/btr509
20 https://doi.org/10.1093/nar/gkx1153
21 https://doi.org/10.1097/aog.0000000000000666
22 https://doi.org/10.1097/aog.0000000000001947
23 https://doi.org/10.12688/wellcomeopenres.11640.1
24 schema:datePublished 2019-03-08
25 schema:datePublishedReg 2019-03-08
26 schema:description PURPOSE: Prenatal genetic carrier screening can identify parents at risk of having a child affected by a recessive condition. However, the conditions/genes most appropriate for screening remain a matter of debate. Estimates of carrier rates across genes are needed to guide construction of carrier screening panels. METHOD: We leveraged an exome sequencing database (n = 123,136) to estimate carrier rates across six major ancestries for 415 genes associated with severe recessive conditions. RESULTS: We found that 32.6% (East Asian) to 62.9% (Ashkenazi Jewish) of individuals are variant carriers in at least one of the 415 genes. For couples, screening all 415 genes would identify 0.17-2.52% of couples as being at risk for having a child affected by one of these conditions. Screening just the 40 genes with carrier rate >1.0% would identify more than 76% of these at-risk couples. An ancestry-specific panel designed to capture genes with carrier rates >1.0% would include 5 to 28 genes, while a comparable panethnic panel would include 40 genes. CONCLUSION: Our work guides the design of carrier screening panels and provides data to assist in counseling prospective parents. Our results highlight a high cumulative carrier rate across genes, underscoring the need for careful selection of genes for screening.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf sg:journal.1119411
31 schema:name Estimating yields of prenatal carrier screening and implications for design of expanded carrier screening panels
32 schema:pagination 1-8
33 schema:productId N0c2524cbf2b24e99b1fc3c9d5b459924
34 N2e1a638b50034c63914bf3bb509b73e8
35 N634e354e88cb4661b62bb3a4b1d1fd88
36 N645672b28e024416970d2eb5a0dba68b
37 N9af5e1d440c546a78034d778e4b8a9dc
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112603375
39 https://doi.org/10.1038/s41436-019-0472-7
40 schema:sdDatePublished 2019-04-15T09:03
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Na99003ffebc54319aa3281f8029f1019
43 schema:url https://www.nature.com/articles/s41436-019-0472-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N026b7c45eeef4941b8384462e6ba948a rdf:first Nc653aecdb34b4687b8e18cf2ca6274f5
48 rdf:rest rdf:nil
49 N0c2524cbf2b24e99b1fc3c9d5b459924 schema:name nlm_unique_id
50 schema:value 9815831
51 rdf:type schema:PropertyValue
52 N24341275343b4fb7b1b031618b8cd7c1 rdf:first N62187a2f2b2047ef8a3dd363011e9148
53 rdf:rest N026b7c45eeef4941b8384462e6ba948a
54 N2e1a638b50034c63914bf3bb509b73e8 schema:name pubmed_id
55 schema:value 30846881
56 rdf:type schema:PropertyValue
57 N62187a2f2b2047ef8a3dd363011e9148 schema:affiliation https://www.grid.ac/institutes/grid.429995.a
58 schema:familyName Guo
59 schema:givenName Michael H.
60 rdf:type schema:Person
61 N634e354e88cb4661b62bb3a4b1d1fd88 schema:name dimensions_id
62 schema:value pub.1112603375
63 rdf:type schema:PropertyValue
64 N645672b28e024416970d2eb5a0dba68b schema:name doi
65 schema:value 10.1038/s41436-019-0472-7
66 rdf:type schema:PropertyValue
67 N9af5e1d440c546a78034d778e4b8a9dc schema:name readcube_id
68 schema:value 46ba996a692c2d905d367c042ce70cfa6c4b32b6a02a35605d16ecc2a39bc895
69 rdf:type schema:PropertyValue
70 Na99003ffebc54319aa3281f8029f1019 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nc653aecdb34b4687b8e18cf2ca6274f5 schema:affiliation https://www.grid.ac/institutes/grid.411588.1
73 schema:familyName Gregg
74 schema:givenName Anthony R.
75 rdf:type schema:Person
76 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
77 schema:name Biological Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
80 schema:name Genetics
81 rdf:type schema:DefinedTerm
82 sg:journal.1119411 schema:issn 1098-3600
83 1530-0366
84 schema:name Genetics in Medicine
85 rdf:type schema:Periodical
86 sg:pub.10.1007/s12687-017-0310-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1090302219
87 https://doi.org/10.1007/s12687-017-0310-z
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/gim.2015.123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022123152
90 https://doi.org/10.1038/gim.2015.123
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/gim.2015.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022229472
93 https://doi.org/10.1038/gim.2015.30
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/gim.2016.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034718750
96 https://doi.org/10.1038/gim.2016.30
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/gim.2017.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085134019
99 https://doi.org/10.1038/gim.2017.50
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/gim.2017.60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085733718
102 https://doi.org/10.1038/gim.2017.60
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/gim.2017.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086113061
105 https://doi.org/10.1038/gim.2017.69
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nature19057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022281897
108 https://doi.org/10.1038/nature19057
109 rdf:type schema:CreativeWork
110 sg:pub.10.1097/gim.0b013e318188d069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006507920
111 https://doi.org/10.1097/gim.0b013e318188d069
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1001/jama.2016.11139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000760112
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ajhg.2016.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021627428
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ajhg.2018.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103903382
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.ogc.2017.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100898836
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1056/nejmoa0809578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024247324
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1056/nejmsr1406261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043987425
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1093/bioinformatics/btr509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022904685
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1093/nar/gkx1153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092758364
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1097/aog.0000000000000666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048668582
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1097/aog.0000000000001947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083856165
132 rdf:type schema:CreativeWork
133 https://doi.org/10.12688/wellcomeopenres.11640.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085785022
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.411588.1 schema:alternateName Baylor University Medical Center
136 schema:name Department of Obstetrics and Gynecology, Baylor University Medical Center, 75246, Dallas, TX, USA
137 rdf:type schema:Organization
138 https://www.grid.ac/institutes/grid.429995.a schema:alternateName University of North Carolina Hospitals
139 schema:name Department of Medicine, University of North Carolina Hospitals, 25779, Chapel Hill, NC, USA
140 Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...