Pitfalls of clinical exome and gene panel testing: alternative transcripts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-08

AUTHORS

Dale L. Bodian, Prachi Kothiyal, Natalie S. Hauser

ABSTRACT

PURPOSE: Clinical exome and gene panel testing can provide molecular diagnoses for patients with rare Mendelian disorders, but for many patients these tests are nonexplanatory. We investigated whether interrogation of alternative transcripts in known disease genes could provide answers for additional patients. METHODS: We integrated alternative transcripts for known neonatal epilepsy genes with RNA-Seq data to identify brain-expressed coding regions that are not evaluated by popular neonatal epilepsy clinical gene panel and exome tests. RESULTS: We found brain-expressed alternative coding regions in 89 (30%) of 292 neonatal epilepsy genes. The 147 regions encompass 15,713 bases that are noncoding in the primary transcripts analyzed by the clinical tests. Alternative coding regions from at least 5 genes carry reported pathogenic variants. Three candidate variants in these regions were identified in public exome data from 337 epilepsy patients. Incorporating alternative transcripts into the analysis of neonatal epilepsy genes in 44 patient genomes identified the pathogenic variant for the epilepsy case and 2 variants of uncertain significance (VUS) among the 43 control cases. CONCLUSION: Assessment of alternative transcripts in exon-based clinical genetic tests, including gene panel, exome, and genome sequencing, may provide diagnoses for patients for whom standard testing is unrevealing, without introducing many VUS. More... »

PAGES

1-6

References to SciGraph publications

  • 2012-09. An integrated encyclopedia of DNA elements in the human genome in NATURE
  • 2017-11. Pitfalls of trio-based exome sequencing: imprinted genes and parental mosaicism—MAGEL2 as an example in GENETICS IN MEDICINE
  • 2018-06. Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of prospective annual reanalysis in GENETICS IN MEDICINE
  • 2014-12. Choice of transcripts and software has a large effect on variant annotation in GENOME MEDICINE
  • 2018-02. De novo variants in the alternative exon 5 of SCN8A cause epileptic encephalopathy in GENETICS IN MEDICINE
  • 2018-10. Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders in GENETICS IN MEDICINE
  • 2017-12. Lessons learned from additional research analyses of unsolved clinical exome cases in GENOME MEDICINE
  • 2016-11. Imprinting: the Achilles heel of trio-based exome sequencing in GENETICS IN MEDICINE
  • 2008-12. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing in NATURE GENETICS
  • 2016-08. Analysis of protein-coding genetic variation in 60,706 humans in NATURE
  • 2017-02. Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers in GENETICS IN MEDICINE
  • 2015-01. Developmental regulation of human cortex transcription and its clinical relevance at single base resolution in NATURE NEUROSCIENCE
  • Journal

    TITLE

    Genetics in Medicine

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41436-018-0319-7

    DOI

    http://dx.doi.org/10.1038/s41436-018-0319-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107452322

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30293991


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Inova Health System", 
              "id": "https://www.grid.ac/institutes/grid.414629.c", 
              "name": [
                "Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bodian", 
            "givenName": "Dale L.", 
            "id": "sg:person.0657430004.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657430004.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inova Health System", 
              "id": "https://www.grid.ac/institutes/grid.414629.c", 
              "name": [
                "Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kothiyal", 
            "givenName": "Prachi", 
            "id": "sg:person.01156343514.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156343514.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Inova Health System", 
              "id": "https://www.grid.ac/institutes/grid.414629.c", 
              "name": [
                "Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hauser", 
            "givenName": "Natalie S.", 
            "id": "sg:person.01302701503.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302701503.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/mgg3.107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000879693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gks1172", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003865873"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nn.3898", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009907032", 
              "https://doi.org/10.1038/nn.3898"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature19057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022281897", 
              "https://doi.org/10.1038/nature19057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2016.128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024100057", 
              "https://doi.org/10.1038/gim.2016.128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029065430", 
              "https://doi.org/10.1038/nature11247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1262110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029707840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gm543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039764104", 
              "https://doi.org/10.1186/gm543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2016.88", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041583016", 
              "https://doi.org/10.1038/gim.2016.88"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aaa0355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047875074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.259", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050283464", 
              "https://doi.org/10.1038/ng.259"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-017-0412-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084252244", 
              "https://doi.org/10.1186/s13073-017-0412-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13073-017-0412-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084252244", 
              "https://doi.org/10.1186/s13073-017-0412-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086117147", 
              "https://doi.org/10.1038/gim.2017.42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/mcs.a002055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090693550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092055287", 
              "https://doi.org/10.1038/gim.2017.100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092504063", 
              "https://doi.org/10.1038/gim.2017.162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100316360", 
              "https://doi.org/10.1038/gim.2017.246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100316360", 
              "https://doi.org/10.1038/gim.2017.246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2017.246", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100316360", 
              "https://doi.org/10.1038/gim.2017.246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/mcs.a002360", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101043358"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmoldx.2018.06.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106046004"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-08", 
        "datePublishedReg": "2018-10-08", 
        "description": "PURPOSE: Clinical exome and gene panel testing can provide molecular diagnoses for patients with rare Mendelian disorders, but for many patients these tests are nonexplanatory. We investigated whether interrogation of alternative transcripts in known disease genes could provide answers for additional patients.\nMETHODS: We integrated alternative transcripts for known neonatal epilepsy genes with RNA-Seq data to identify brain-expressed coding regions that are not evaluated by popular neonatal epilepsy clinical gene panel and exome tests.\nRESULTS: We found brain-expressed alternative coding regions in 89 (30%) of 292 neonatal epilepsy genes. The 147 regions encompass 15,713 bases that are noncoding in the primary transcripts analyzed by the clinical tests. Alternative coding regions from at least 5 genes carry reported pathogenic variants. Three candidate variants in these regions were identified in public exome data from 337 epilepsy patients. Incorporating alternative transcripts into the analysis of neonatal epilepsy genes in 44 patient genomes identified the pathogenic variant for the epilepsy case and 2 variants of uncertain significance (VUS) among the 43 control cases.\nCONCLUSION: Assessment of alternative transcripts in exon-based clinical genetic tests, including gene panel, exome, and genome sequencing, may provide diagnoses for patients for whom standard testing is unrevealing, without introducing many VUS.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41436-018-0319-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1119411", 
            "issn": [
              "1098-3600", 
              "1530-0366"
            ], 
            "name": "Genetics in Medicine", 
            "type": "Periodical"
          }
        ], 
        "name": "Pitfalls of clinical exome and gene panel testing: alternative transcripts", 
        "pagination": "1-6", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f66c3969f198a0cf6891f273287ee01302463e780b09c212427fce00d201c802"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30293991"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9815831"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41436-018-0319-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107452322"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41436-018-0319-7", 
          "https://app.dimensions.ai/details/publication/pub.1107452322"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T01:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000555.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41436-018-0319-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41436-018-0319-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41436-018-0319-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41436-018-0319-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41436-018-0319-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    146 TRIPLES      21 PREDICATES      45 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41436-018-0319-7 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N16dff6a3ea73450db45594083823d6ef
    4 schema:citation sg:pub.10.1038/gim.2016.128
    5 sg:pub.10.1038/gim.2016.88
    6 sg:pub.10.1038/gim.2017.100
    7 sg:pub.10.1038/gim.2017.162
    8 sg:pub.10.1038/gim.2017.246
    9 sg:pub.10.1038/gim.2017.42
    10 sg:pub.10.1038/nature11247
    11 sg:pub.10.1038/nature19057
    12 sg:pub.10.1038/ng.259
    13 sg:pub.10.1038/nn.3898
    14 sg:pub.10.1186/gm543
    15 sg:pub.10.1186/s13073-017-0412-6
    16 https://doi.org/10.1002/mgg3.107
    17 https://doi.org/10.1016/j.jmoldx.2018.06.005
    18 https://doi.org/10.1093/nar/gks1172
    19 https://doi.org/10.1101/mcs.a002055
    20 https://doi.org/10.1101/mcs.a002360
    21 https://doi.org/10.1126/science.1262110
    22 https://doi.org/10.1126/science.aaa0355
    23 schema:datePublished 2018-10-08
    24 schema:datePublishedReg 2018-10-08
    25 schema:description PURPOSE: Clinical exome and gene panel testing can provide molecular diagnoses for patients with rare Mendelian disorders, but for many patients these tests are nonexplanatory. We investigated whether interrogation of alternative transcripts in known disease genes could provide answers for additional patients. METHODS: We integrated alternative transcripts for known neonatal epilepsy genes with RNA-Seq data to identify brain-expressed coding regions that are not evaluated by popular neonatal epilepsy clinical gene panel and exome tests. RESULTS: We found brain-expressed alternative coding regions in 89 (30%) of 292 neonatal epilepsy genes. The 147 regions encompass 15,713 bases that are noncoding in the primary transcripts analyzed by the clinical tests. Alternative coding regions from at least 5 genes carry reported pathogenic variants. Three candidate variants in these regions were identified in public exome data from 337 epilepsy patients. Incorporating alternative transcripts into the analysis of neonatal epilepsy genes in 44 patient genomes identified the pathogenic variant for the epilepsy case and 2 variants of uncertain significance (VUS) among the 43 control cases. CONCLUSION: Assessment of alternative transcripts in exon-based clinical genetic tests, including gene panel, exome, and genome sequencing, may provide diagnoses for patients for whom standard testing is unrevealing, without introducing many VUS.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree false
    29 schema:isPartOf sg:journal.1119411
    30 schema:name Pitfalls of clinical exome and gene panel testing: alternative transcripts
    31 schema:pagination 1-6
    32 schema:productId N057165a197bd46c09cd11e97cea0c309
    33 N5752b6a5a9864fe4bc9d6a8240a76ef4
    34 N905091d5c54b4e63aeff74f82cabc45a
    35 N90c93c351d2d47eba13ed5170bb6e626
    36 N9dc898a04c214281b0264cb21e04c5f7
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107452322
    38 https://doi.org/10.1038/s41436-018-0319-7
    39 schema:sdDatePublished 2019-04-11T01:15
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N493fe8dbac0147d09b25a27570e7ad1f
    42 schema:url https://www.nature.com/articles/s41436-018-0319-7
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N057165a197bd46c09cd11e97cea0c309 schema:name doi
    47 schema:value 10.1038/s41436-018-0319-7
    48 rdf:type schema:PropertyValue
    49 N16dff6a3ea73450db45594083823d6ef rdf:first sg:person.0657430004.25
    50 rdf:rest N3ba8d13c272747ef90982758c4f81f71
    51 N3ba8d13c272747ef90982758c4f81f71 rdf:first sg:person.01156343514.43
    52 rdf:rest N3f5f93816a094046ba4cf61922f052cb
    53 N3f5f93816a094046ba4cf61922f052cb rdf:first sg:person.01302701503.69
    54 rdf:rest rdf:nil
    55 N493fe8dbac0147d09b25a27570e7ad1f schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N5752b6a5a9864fe4bc9d6a8240a76ef4 schema:name readcube_id
    58 schema:value f66c3969f198a0cf6891f273287ee01302463e780b09c212427fce00d201c802
    59 rdf:type schema:PropertyValue
    60 N905091d5c54b4e63aeff74f82cabc45a schema:name nlm_unique_id
    61 schema:value 9815831
    62 rdf:type schema:PropertyValue
    63 N90c93c351d2d47eba13ed5170bb6e626 schema:name dimensions_id
    64 schema:value pub.1107452322
    65 rdf:type schema:PropertyValue
    66 N9dc898a04c214281b0264cb21e04c5f7 schema:name pubmed_id
    67 schema:value 30293991
    68 rdf:type schema:PropertyValue
    69 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Biological Sciences
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Genetics
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1119411 schema:issn 1098-3600
    76 1530-0366
    77 schema:name Genetics in Medicine
    78 rdf:type schema:Periodical
    79 sg:person.01156343514.43 schema:affiliation https://www.grid.ac/institutes/grid.414629.c
    80 schema:familyName Kothiyal
    81 schema:givenName Prachi
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156343514.43
    83 rdf:type schema:Person
    84 sg:person.01302701503.69 schema:affiliation https://www.grid.ac/institutes/grid.414629.c
    85 schema:familyName Hauser
    86 schema:givenName Natalie S.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302701503.69
    88 rdf:type schema:Person
    89 sg:person.0657430004.25 schema:affiliation https://www.grid.ac/institutes/grid.414629.c
    90 schema:familyName Bodian
    91 schema:givenName Dale L.
    92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657430004.25
    93 rdf:type schema:Person
    94 sg:pub.10.1038/gim.2016.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024100057
    95 https://doi.org/10.1038/gim.2016.128
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1038/gim.2016.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041583016
    98 https://doi.org/10.1038/gim.2016.88
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1038/gim.2017.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092055287
    101 https://doi.org/10.1038/gim.2017.100
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.1038/gim.2017.162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092504063
    104 https://doi.org/10.1038/gim.2017.162
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1038/gim.2017.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100316360
    107 https://doi.org/10.1038/gim.2017.246
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1038/gim.2017.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086117147
    110 https://doi.org/10.1038/gim.2017.42
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1038/nature11247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029065430
    113 https://doi.org/10.1038/nature11247
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1038/nature19057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022281897
    116 https://doi.org/10.1038/nature19057
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1038/ng.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283464
    119 https://doi.org/10.1038/ng.259
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1038/nn.3898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009907032
    122 https://doi.org/10.1038/nn.3898
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1186/gm543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039764104
    125 https://doi.org/10.1186/gm543
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1186/s13073-017-0412-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084252244
    128 https://doi.org/10.1186/s13073-017-0412-6
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1002/mgg3.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000879693
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.jmoldx.2018.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106046004
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1093/nar/gks1172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003865873
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1101/mcs.a002055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090693550
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1101/mcs.a002360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101043358
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1126/science.1262110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029707840
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1126/science.aaa0355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047875074
    143 rdf:type schema:CreativeWork
    144 https://www.grid.ac/institutes/grid.414629.c schema:alternateName Inova Health System
    145 schema:name Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
    146 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...