Prioritization of disease genes from GWAS using ensemble-based positive-unlabeled learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-07-19

AUTHORS

Nikita Kolosov, Mark J. Daly, Mykyta Artomov

ABSTRACT

A primary challenge in understanding disease biology from genome-wide association studies (GWAS) arises from the inability to directly implicate causal genes from association data. Integration of multiple-omics data sources potentially provides important functional links between associated variants and candidate genes. Machine-learning is well-positioned to take advantage of a variety of such data and provide a solution for the prioritization of disease genes. Yet, classical positive-negative classifiers impose strong limitations on the gene prioritization procedure, such as a lack of reliable non-causal genes for training. Here, we developed a novel gene prioritization tool—Gene Prioritizer (GPrior). It is an ensemble of five positive-unlabeled bagging classifiers (Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, Adaptive Boosting), that treats all genes of unknown relevance as an unlabeled set. GPrior selects an optimal composition of algorithms to tune the model for each specific phenotype. Altogether, GPrior fills an important niche of methods for GWAS data post-processing, significantly improving the ability to pinpoint disease genes compared to existing solutions. More... »

PAGES

1527-1535

References to SciGraph publications

  • 2009-10. Bayesian statistical methods for genetic association studies in NATURE REVIEWS GENETICS
  • 2018-06-21. IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes in NATURE COMMUNICATIONS
  • 2018-02-26. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection in NATURE GENETICS
  • 2018-01-09. Structural absorption by barbule microstructures of super black bird of paradise feathers in NATURE COMMUNICATIONS
  • 2020-10-14. Evidence for 28 genetic disorders discovered by combining healthcare and research data in NATURE
  • 2009. Applied Statistical Genetics with R, For Population-based Association Studies in NONE
  • 1998. PAC Learning from Positive Statistical Queries in ALGORITHMIC LEARNING THEORY
  • 2017-06-28. Fine-mapping inflammatory bowel disease loci to single-variant resolution in NATURE
  • 2018-07-23. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals in NATURE GENETICS
  • 2017-03-13. Genetics of coronary artery disease: discovery, biology and clinical translation in NATURE REVIEWS GENETICS
  • 2007-09-16. Population genomics of human gene expression in NATURE GENETICS
  • 2006-12-13. Methods for the selection of tagging SNPs: a comparison of tagging efficiency and performance in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2011-10-09. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease in NATURE GENETICS
  • 2017-10-12. Genetic effects on gene expression across human tissues in NATURE
  • 2017-12-20. Erratum: Genetic effects on gene expression across human tissues in NATURE
  • 2020-04-02. Learning from positive and unlabeled data: a survey in MACHINE LEARNING
  • 2020-02-26. Pathway paradigms revealed from the genetics of inflammatory bowel disease in NATURE
  • 2005-03-14. Speeding disease gene discovery by sequence based candidate prioritization in BMC BIOINFORMATICS
  • 2014-03-26. An atlas of active enhancers across human cell types and tissues in NATURE
  • 2015-07-20. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations in NATURE GENETICS
  • 2009. Cool Blog Classification from Positive and Unlabeled Examples in ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41431-021-00930-w

    DOI

    http://dx.doi.org/10.1038/s41431-021-00930-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1139786242

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34276057


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Diseases, Inborn", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Machine Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Quantitative Trait Loci", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Broad Institute, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "ITMO University, St. Petersburg, Russia", 
                "Almazov National Medical Research Center, St. Petersburg, Russia", 
                "Broad Institute, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolosov", 
            "givenName": "Nikita", 
            "id": "sg:person.010231051303.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231051303.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "Broad Institute, Cambridge, MA, USA", 
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daly", 
            "givenName": "Mark J.", 
            "id": "sg:person.011517303117.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.452494.a", 
              "name": [
                "ITMO University, St. Petersburg, Russia", 
                "Almazov National Medical Research Center, St. Petersburg, Russia", 
                "Broad Institute, Cambridge, MA, USA", 
                "Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA", 
                "Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Artomov", 
            "givenName": "Mykyta", 
            "id": "sg:person.01127007637.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127007637.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41588-018-0147-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105743456", 
              "https://doi.org/10.1038/s41588-018-0147-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.952", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043485621", 
              "https://doi.org/10.1038/ng.952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2016.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129678", 
              "https://doi.org/10.1038/nrg.2016.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0059-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101216525", 
              "https://doi.org/10.1038/s41588-018-0059-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026250562", 
              "https://doi.org/10.1038/ng2142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12787", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022158752", 
              "https://doi.org/10.1038/nature12787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2615", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021006418", 
              "https://doi.org/10.1038/nrg2615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/sj.ejhg.5201755", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022641015", 
              "https://doi.org/10.1038/sj.ejhg.5201755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019843926", 
              "https://doi.org/10.1038/ng.3359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature25160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099720467", 
              "https://doi.org/10.1038/nature25160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-89554-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009510827", 
              "https://doi.org/10.1007/978-0-387-89554-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-01307-2_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012240890", 
              "https://doi.org/10.1007/978-3-642-01307-2_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090278096", 
              "https://doi.org/10.1038/nature22969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24277", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152730", 
              "https://doi.org/10.1038/nature24277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-55", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010479517", 
              "https://doi.org/10.1186/1471-2105-6-55"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10994-020-05877-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126083308", 
              "https://doi.org/10.1007/s10994-020-05877-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-49730-7_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050171685", 
              "https://doi.org/10.1007/3-540-49730-7_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-04365-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104656541", 
              "https://doi.org/10.1038/s41467-018-04365-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2025-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1125110416", 
              "https://doi.org/10.1038/s41586-020-2025-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2832-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1131672543", 
              "https://doi.org/10.1038/s41586-020-2832-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-02088-w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100092794", 
              "https://doi.org/10.1038/s41467-017-02088-w"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-07-19", 
        "datePublishedReg": "2021-07-19", 
        "description": "A primary challenge in understanding disease biology from genome-wide association studies (GWAS) arises from the inability to directly implicate causal genes from association data. Integration of multiple-omics data sources potentially provides important functional links between associated variants and candidate genes. Machine-learning is well-positioned to take advantage of a variety of such data and provide a solution for the prioritization of disease genes. Yet, classical positive-negative classifiers impose strong limitations on the gene prioritization procedure, such as a lack of reliable non-causal genes for training. Here, we developed a novel gene prioritization tool\u2014Gene Prioritizer (GPrior). It\u00a0is an ensemble of five positive-unlabeled bagging classifiers (Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, Adaptive Boosting), that treats all genes of unknown relevance as an unlabeled set. GPrior selects an optimal composition of algorithms to tune the model for each specific phenotype. Altogether, GPrior fills an important niche of methods for GWAS data post-processing, significantly improving the ability to pinpoint disease genes compared to existing solutions.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41431-021-00930-w", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1103410", 
            "issn": [
              "1018-4813", 
              "1476-5438"
            ], 
            "name": "European Journal of Human Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "genome-wide association studies", 
          "disease genes", 
          "important functional link", 
          "causal genes", 
          "GWAS data", 
          "multiple omics data sources", 
          "candidate genes", 
          "association studies", 
          "functional link", 
          "genes", 
          "association data", 
          "specific phenotypes", 
          "disease biology", 
          "unknown relevance", 
          "important niche", 
          "prioritization procedure", 
          "niche", 
          "biology", 
          "positive-unlabeled learning", 
          "phenotype", 
          "Prioritizer", 
          "variants", 
          "strong limitations", 
          "prioritization", 
          "composition", 
          "variety", 
          "ability", 
          "such data", 
          "inability", 
          "data", 
          "link", 
          "relevance", 
          "lack", 
          "primary challenge", 
          "study", 
          "source", 
          "set", 
          "limitations", 
          "integration", 
          "ensemble", 
          "challenges", 
          "model", 
          "advantages", 
          "bagging classifier", 
          "method", 
          "data sources", 
          "unlabeled set", 
          "classifier", 
          "procedure", 
          "solution", 
          "algorithm", 
          "optimal composition", 
          "learning", 
          "training"
        ], 
        "name": "Prioritization of disease genes from GWAS using ensemble-based positive-unlabeled learning", 
        "pagination": "1527-1535", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1139786242"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41431-021-00930-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34276057"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41431-021-00930-w", 
          "https://app.dimensions.ai/details/publication/pub.1139786242"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_893.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41431-021-00930-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41431-021-00930-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41431-021-00930-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41431-021-00930-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41431-021-00930-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    242 TRIPLES      21 PREDICATES      105 URIs      76 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41431-021-00930-w schema:about N3396850ba81a402eb6a3cf60af809f84
    2 N7f2e80636559444c83360cbd44e413ba
    3 N90a250227d8a4ae99b0a1169703942a4
    4 Nd08779504ed3410bb90492c583de85ab
    5 Ne61793b0411b48c4b2cde42c1d93c977
    6 anzsrc-for:06
    7 anzsrc-for:0604
    8 schema:author Nb2f106b064f64ad2af18870e4d3d7f8b
    9 schema:citation sg:pub.10.1007/3-540-49730-7_9
    10 sg:pub.10.1007/978-0-387-89554-3
    11 sg:pub.10.1007/978-3-642-01307-2_9
    12 sg:pub.10.1007/s10994-020-05877-5
    13 sg:pub.10.1038/nature12787
    14 sg:pub.10.1038/nature22969
    15 sg:pub.10.1038/nature24277
    16 sg:pub.10.1038/nature25160
    17 sg:pub.10.1038/ng.3359
    18 sg:pub.10.1038/ng.952
    19 sg:pub.10.1038/ng2142
    20 sg:pub.10.1038/nrg.2016.160
    21 sg:pub.10.1038/nrg2615
    22 sg:pub.10.1038/s41467-017-02088-w
    23 sg:pub.10.1038/s41467-018-04365-8
    24 sg:pub.10.1038/s41586-020-2025-2
    25 sg:pub.10.1038/s41586-020-2832-5
    26 sg:pub.10.1038/s41588-018-0059-2
    27 sg:pub.10.1038/s41588-018-0147-3
    28 sg:pub.10.1038/sj.ejhg.5201755
    29 sg:pub.10.1186/1471-2105-6-55
    30 schema:datePublished 2021-07-19
    31 schema:datePublishedReg 2021-07-19
    32 schema:description A primary challenge in understanding disease biology from genome-wide association studies (GWAS) arises from the inability to directly implicate causal genes from association data. Integration of multiple-omics data sources potentially provides important functional links between associated variants and candidate genes. Machine-learning is well-positioned to take advantage of a variety of such data and provide a solution for the prioritization of disease genes. Yet, classical positive-negative classifiers impose strong limitations on the gene prioritization procedure, such as a lack of reliable non-causal genes for training. Here, we developed a novel gene prioritization tool—Gene Prioritizer (GPrior). It is an ensemble of five positive-unlabeled bagging classifiers (Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, Adaptive Boosting), that treats all genes of unknown relevance as an unlabeled set. GPrior selects an optimal composition of algorithms to tune the model for each specific phenotype. Altogether, GPrior fills an important niche of methods for GWAS data post-processing, significantly improving the ability to pinpoint disease genes compared to existing solutions.
    33 schema:genre article
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N6f8d7e1094c948648b46e0302bff638b
    36 Nb690ec859f7b4185bdee9c70d7dcd3f3
    37 sg:journal.1103410
    38 schema:keywords GWAS data
    39 Prioritizer
    40 ability
    41 advantages
    42 algorithm
    43 association data
    44 association studies
    45 bagging classifier
    46 biology
    47 candidate genes
    48 causal genes
    49 challenges
    50 classifier
    51 composition
    52 data
    53 data sources
    54 disease biology
    55 disease genes
    56 ensemble
    57 functional link
    58 genes
    59 genome-wide association studies
    60 important functional link
    61 important niche
    62 inability
    63 integration
    64 lack
    65 learning
    66 limitations
    67 link
    68 method
    69 model
    70 multiple omics data sources
    71 niche
    72 optimal composition
    73 phenotype
    74 positive-unlabeled learning
    75 primary challenge
    76 prioritization
    77 prioritization procedure
    78 procedure
    79 relevance
    80 set
    81 solution
    82 source
    83 specific phenotypes
    84 strong limitations
    85 study
    86 such data
    87 training
    88 unknown relevance
    89 unlabeled set
    90 variants
    91 variety
    92 schema:name Prioritization of disease genes from GWAS using ensemble-based positive-unlabeled learning
    93 schema:pagination 1527-1535
    94 schema:productId N06d2d649c44e4832a08e5bdf321131f8
    95 Nc0d2358ca5454aef8a6f592ab4b96eb7
    96 Nc9cbe596322b48e1a0b237636f01a37f
    97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139786242
    98 https://doi.org/10.1038/s41431-021-00930-w
    99 schema:sdDatePublished 2022-12-01T06:43
    100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    101 schema:sdPublisher Nc1dc0fc5989e412696ab46f02988d662
    102 schema:url https://doi.org/10.1038/s41431-021-00930-w
    103 sgo:license sg:explorer/license/
    104 sgo:sdDataset articles
    105 rdf:type schema:ScholarlyArticle
    106 N06d2d649c44e4832a08e5bdf321131f8 schema:name doi
    107 schema:value 10.1038/s41431-021-00930-w
    108 rdf:type schema:PropertyValue
    109 N1a4fd4ad93eb42a6a411d536c8df5164 rdf:first sg:person.01127007637.96
    110 rdf:rest rdf:nil
    111 N3396850ba81a402eb6a3cf60af809f84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Genetic Diseases, Inborn
    113 rdf:type schema:DefinedTerm
    114 N6f8d7e1094c948648b46e0302bff638b schema:issueNumber 10
    115 rdf:type schema:PublicationIssue
    116 N75f5a5d37d6645f7b5ed17094a9fe0c7 rdf:first sg:person.011517303117.07
    117 rdf:rest N1a4fd4ad93eb42a6a411d536c8df5164
    118 N7f2e80636559444c83360cbd44e413ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Quantitative Trait Loci
    120 rdf:type schema:DefinedTerm
    121 N90a250227d8a4ae99b0a1169703942a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Machine Learning
    123 rdf:type schema:DefinedTerm
    124 Nb2f106b064f64ad2af18870e4d3d7f8b rdf:first sg:person.010231051303.71
    125 rdf:rest N75f5a5d37d6645f7b5ed17094a9fe0c7
    126 Nb690ec859f7b4185bdee9c70d7dcd3f3 schema:volumeNumber 29
    127 rdf:type schema:PublicationVolume
    128 Nc0d2358ca5454aef8a6f592ab4b96eb7 schema:name dimensions_id
    129 schema:value pub.1139786242
    130 rdf:type schema:PropertyValue
    131 Nc1dc0fc5989e412696ab46f02988d662 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 Nc9cbe596322b48e1a0b237636f01a37f schema:name pubmed_id
    134 schema:value 34276057
    135 rdf:type schema:PropertyValue
    136 Nd08779504ed3410bb90492c583de85ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Genome-Wide Association Study
    138 rdf:type schema:DefinedTerm
    139 Ne61793b0411b48c4b2cde42c1d93c977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Humans
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Biological Sciences
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Genetics
    147 rdf:type schema:DefinedTerm
    148 sg:journal.1103410 schema:issn 1018-4813
    149 1476-5438
    150 schema:name European Journal of Human Genetics
    151 schema:publisher Springer Nature
    152 rdf:type schema:Periodical
    153 sg:person.010231051303.71 schema:affiliation grid-institutes:grid.66859.34
    154 schema:familyName Kolosov
    155 schema:givenName Nikita
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010231051303.71
    157 rdf:type schema:Person
    158 sg:person.01127007637.96 schema:affiliation grid-institutes:grid.452494.a
    159 schema:familyName Artomov
    160 schema:givenName Mykyta
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127007637.96
    162 rdf:type schema:Person
    163 sg:person.011517303117.07 schema:affiliation grid-institutes:grid.452494.a
    164 schema:familyName Daly
    165 schema:givenName Mark J.
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07
    167 rdf:type schema:Person
    168 sg:pub.10.1007/3-540-49730-7_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050171685
    169 https://doi.org/10.1007/3-540-49730-7_9
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/978-0-387-89554-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009510827
    172 https://doi.org/10.1007/978-0-387-89554-3
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/978-3-642-01307-2_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012240890
    175 https://doi.org/10.1007/978-3-642-01307-2_9
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s10994-020-05877-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126083308
    178 https://doi.org/10.1007/s10994-020-05877-5
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nature12787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022158752
    181 https://doi.org/10.1038/nature12787
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nature22969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090278096
    184 https://doi.org/10.1038/nature22969
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nature24277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152730
    187 https://doi.org/10.1038/nature24277
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature25160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099720467
    190 https://doi.org/10.1038/nature25160
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/ng.3359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019843926
    193 https://doi.org/10.1038/ng.3359
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/ng.952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043485621
    196 https://doi.org/10.1038/ng.952
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/ng2142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026250562
    199 https://doi.org/10.1038/ng2142
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nrg.2016.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129678
    202 https://doi.org/10.1038/nrg.2016.160
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nrg2615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021006418
    205 https://doi.org/10.1038/nrg2615
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/s41467-017-02088-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1100092794
    208 https://doi.org/10.1038/s41467-017-02088-w
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/s41467-018-04365-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104656541
    211 https://doi.org/10.1038/s41467-018-04365-8
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/s41586-020-2025-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1125110416
    214 https://doi.org/10.1038/s41586-020-2025-2
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/s41586-020-2832-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131672543
    217 https://doi.org/10.1038/s41586-020-2832-5
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/s41588-018-0059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101216525
    220 https://doi.org/10.1038/s41588-018-0059-2
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/s41588-018-0147-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105743456
    223 https://doi.org/10.1038/s41588-018-0147-3
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/sj.ejhg.5201755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022641015
    226 https://doi.org/10.1038/sj.ejhg.5201755
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1186/1471-2105-6-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010479517
    229 https://doi.org/10.1186/1471-2105-6-55
    230 rdf:type schema:CreativeWork
    231 grid-institutes:grid.452494.a schema:alternateName Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
    232 schema:name Almazov National Medical Research Center, St. Petersburg, Russia
    233 Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
    234 Broad Institute, Cambridge, MA, USA
    235 ITMO University, St. Petersburg, Russia
    236 Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
    237 rdf:type schema:Organization
    238 grid-institutes:grid.66859.34 schema:alternateName Broad Institute, Cambridge, MA, USA
    239 schema:name Almazov National Medical Research Center, St. Petersburg, Russia
    240 Broad Institute, Cambridge, MA, USA
    241 ITMO University, St. Petersburg, Russia
    242 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...