High-resolution population-specific recombination rates and their effect on phasing and genotype imputation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-11-28

AUTHORS

Shabbeer Hassan, Ida Surakka, Marja-Riitta Taskinen, Veikko Salomaa, Aarno Palotie, Maija Wessman, Taru Tukiainen, Matti Pirinen, Priit Palta, Samuli Ripatti

ABSTRACT

Previous research has shown that using population-specific reference panels has a significant effect on downstream population genomic analyses like haplotype phasing, genotype imputation, and association, especially in the context of population isolates. Here, we developed a high-resolution recombination rate mapping at 10 and 50 kb scale using high-coverage (20–30×) whole-genome sequenced data of 55 family trios from Finland and compared it to recombination rates of non-Finnish Europeans (NFE). We tested the downstream effects of the population-specific recombination rates in statistical phasing and genotype imputation in Finns as compared to the same analyses performed by using the NFE-based recombination rates. We found that Finnish recombination rates have a moderately high correlation (Spearman’s ρ = 0.67–0.79) with NFE, although on average (across all autosomal chromosomes), Finnish rates (2.268 ± 0.4209 cM/Mb) are 12–14% lower than NFE (2.641 ± 0.5032 cM/Mb). Finnish recombination map was found to have no significant effect in haplotype phasing accuracy (switch error rates ~2%) and average imputation concordance rates (97–98% for common, 92–96% for low frequency and 78–90% for rare variants). Our results suggest that haplotype phasing and genotype imputation mostly depend on population-specific contexts like appropriate reference panels and their sample size, but not on population-specific recombination maps. Even though recombination rate estimates had some differences between the Finnish and NFE populations, haplotyping and imputation had not been noticeably affected by the recombination map used. Therefore, the currently available HapMap recombination maps seem robust for population-specific phasing and imputation pipelines, even in the context of relatively isolated populations like Finland. More... »

PAGES

615-624

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41431-020-00768-8

DOI

http://dx.doi.org/10.1038/s41431-020-00768-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1132976983

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33249422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Finland", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome-Wide Association Study", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotype", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genotyping Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplotypes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Migraine Disorders", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombination, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.452494.a", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassan", 
        "givenName": "Shabbeer", 
        "id": "sg:person.01120564436.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120564436.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.452494.a", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Surakka", 
        "givenName": "Ida", 
        "id": "sg:person.01053324561.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053324561.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clinical and molecular metabolism, Research program unit, University of Helsinki, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Clinical and molecular metabolism, Research program unit, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taskinen", 
        "givenName": "Marja-Riitta", 
        "id": "sg:person.012272201145.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272201145.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Finnish Institute for Health and Welfare, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.14758.3f", 
          "name": [
            "Finnish Institute for Health and Welfare, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salomaa", 
        "givenName": "Veikko", 
        "id": "sg:person.01022740164.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022740164.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
            "Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA", 
            "Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palotie", 
        "givenName": "Aarno", 
        "id": "sg:person.01104742263.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104742263.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.452494.a", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wessman", 
        "givenName": "Maija", 
        "id": "sg:person.0635340434.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635340434.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.452494.a", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tukiainen", 
        "givenName": "Taru", 
        "id": "sg:person.01204465321.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204465321.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
            "Department of Public Health, Faculty of Medicine, Clinicum, University of Helsinki, Helsinki, Finland", 
            "Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pirinen", 
        "givenName": "Matti", 
        "id": "sg:person.01155762022.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155762022.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia", 
          "id": "http://www.grid.ac/institutes/grid.10939.32", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
            "Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palta", 
        "givenName": "Priit", 
        "id": "sg:person.01203401127.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203401127.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Public Health, Faculty of Medicine, Clinicum, University of Helsinki, Helsinki, Finland", 
          "id": "http://www.grid.ac/institutes/grid.7737.4", 
          "name": [
            "Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland", 
            "Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA", 
            "Department of Public Health, Faculty of Medicine, Clinicum, University of Helsinki, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ripatti", 
        "givenName": "Samuli", 
        "id": "sg:person.01074100021.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074100021.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature18964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025005893", 
          "https://doi.org/10.1038/nature18964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017509144", 
          "https://doi.org/10.1038/ng1770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812064", 
          "https://doi.org/10.1038/nature15393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004015204", 
          "https://doi.org/10.1038/nrg3054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003279544", 
          "https://doi.org/10.1038/nrg2950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043747449", 
          "https://doi.org/10.1038/nmeth.2307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1001-229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026787741", 
          "https://doi.org/10.1038/ng1001-229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005519278", 
          "https://doi.org/10.1038/nature07331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000661742", 
          "https://doi.org/10.1038/nature11632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030868615", 
          "https://doi.org/10.1038/nature09525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2013-14-4-112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011414137", 
          "https://doi.org/10.1186/gb-2013-14-4-112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034000276", 
          "https://doi.org/10.1038/ng.3679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.2016.43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039803795", 
          "https://doi.org/10.1038/hdy.2016.43"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-11-28", 
    "datePublishedReg": "2020-11-28", 
    "description": "Previous research has shown that using population-specific reference panels has a significant effect on downstream population genomic analyses like haplotype phasing, genotype imputation, and association, especially in the context of population isolates. Here, we developed a high-resolution recombination rate mapping at 10 and 50\u2009kb scale using high-coverage (20\u201330\u00d7) whole-genome sequenced data of 55 family trios from Finland and compared it to recombination rates of non-Finnish Europeans (NFE). We tested the downstream effects of the population-specific recombination rates in statistical phasing and genotype imputation in Finns as compared to the same analyses performed by using the NFE-based recombination rates. We found that Finnish recombination rates have a moderately high correlation (Spearman\u2019s \u03c1\u2009=\u20090.67\u20130.79) with NFE, although on average (across all autosomal chromosomes), Finnish rates (2.268\u2009\u00b1\u20090.4209\u2009cM/Mb) are 12\u201314% lower than NFE (2.641\u2009\u00b1\u20090.5032\u2009cM/Mb). Finnish recombination map was found to have no significant effect in haplotype phasing accuracy (switch error rates ~2%) and average imputation concordance rates (97\u201398% for common, 92\u201396% for low frequency and 78\u201390% for rare variants). Our results suggest that haplotype phasing and genotype imputation mostly depend on population-specific contexts like appropriate reference panels and their sample size, but not on population-specific recombination maps. Even though recombination rate estimates had some differences between the Finnish and NFE populations, haplotyping and imputation had not been noticeably affected by the recombination map used. Therefore, the currently available HapMap recombination maps seem robust for population-specific phasing and imputation pipelines, even in the context of relatively isolated populations like Finland.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41431-020-00768-8", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5324481", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8839356", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4249733", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4249303", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1103410", 
        "issn": [
          "1018-4813", 
          "1476-5438"
        ], 
        "name": "European Journal of Human Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "non-Finnish Europeans", 
      "recombination maps", 
      "genotype imputation", 
      "downstream population genomic analyses", 
      "population genomic analyses", 
      "haplotype phasing", 
      "recombination rate estimates", 
      "appropriate reference panels", 
      "reference panel", 
      "population-specific recombination maps", 
      "population-specific reference panels", 
      "kb scale", 
      "genomic analysis", 
      "recombination rate", 
      "statistical phasing", 
      "population-specific contexts", 
      "imputation pipeline", 
      "downstream effects", 
      "sequenced data", 
      "Finnish rates", 
      "context of population", 
      "population", 
      "haplotyping", 
      "rate estimates", 
      "phasing", 
      "family", 
      "significant effect", 
      "maps", 
      "imputation", 
      "same analysis", 
      "mapping", 
      "analysis", 
      "panel", 
      "effect", 
      "pipeline", 
      "rate", 
      "association", 
      "high correlation", 
      "Finland", 
      "Europeans", 
      "size", 
      "rate mapping", 
      "context", 
      "concordance rate", 
      "sample size", 
      "differences", 
      "data", 
      "results", 
      "correlation", 
      "estimates", 
      "scale", 
      "Finns", 
      "research", 
      "previous research", 
      "Finnish", 
      "accuracy"
    ], 
    "name": "High-resolution population-specific recombination rates and their effect on phasing and genotype imputation", 
    "pagination": "615-624", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1132976983"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41431-020-00768-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33249422"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41431-020-00768-8", 
      "https://app.dimensions.ai/details/publication/pub.1132976983"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_836.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41431-020-00768-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00768-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00768-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00768-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00768-8'


 

This table displays all metadata directly associated to this object as RDF triples.

301 TRIPLES      21 PREDICATES      104 URIs      83 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41431-020-00768-8 schema:about N0156d21ff1464eae89fb5d82b52f1047
2 N16bb8b3df928469c97283bc23c94a1f5
3 N26ef2c1a92b14a7b80f58dc6b2e95c62
4 N36345f9c55e94685a1f562982a9627d5
5 N6107c7f5f79342fc88564b21da23a47b
6 N7af1f56023ab4cf9a02725eee94d14c4
7 N89f4c98fae5e46828db2546d0977cf7a
8 Naa332465ca714073904ce517507011fb
9 Nb9e81bb2d98f4bfea3608aece8bc50e8
10 Nd96f0cdd7efe43fd843891c84f8eaed9
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N9890fb53ad034848971dff886ba5ffba
14 schema:citation sg:pub.10.1038/hdy.2016.43
15 sg:pub.10.1038/nature07331
16 sg:pub.10.1038/nature09525
17 sg:pub.10.1038/nature11632
18 sg:pub.10.1038/nature15393
19 sg:pub.10.1038/nature18964
20 sg:pub.10.1038/ng.3679
21 sg:pub.10.1038/ng1001-229
22 sg:pub.10.1038/ng1770
23 sg:pub.10.1038/nmeth.2307
24 sg:pub.10.1038/nrg2950
25 sg:pub.10.1038/nrg3054
26 sg:pub.10.1186/gb-2013-14-4-112
27 schema:datePublished 2020-11-28
28 schema:datePublishedReg 2020-11-28
29 schema:description Previous research has shown that using population-specific reference panels has a significant effect on downstream population genomic analyses like haplotype phasing, genotype imputation, and association, especially in the context of population isolates. Here, we developed a high-resolution recombination rate mapping at 10 and 50 kb scale using high-coverage (20–30×) whole-genome sequenced data of 55 family trios from Finland and compared it to recombination rates of non-Finnish Europeans (NFE). We tested the downstream effects of the population-specific recombination rates in statistical phasing and genotype imputation in Finns as compared to the same analyses performed by using the NFE-based recombination rates. We found that Finnish recombination rates have a moderately high correlation (Spearman’s ρ = 0.67–0.79) with NFE, although on average (across all autosomal chromosomes), Finnish rates (2.268 ± 0.4209 cM/Mb) are 12–14% lower than NFE (2.641 ± 0.5032 cM/Mb). Finnish recombination map was found to have no significant effect in haplotype phasing accuracy (switch error rates ~2%) and average imputation concordance rates (97–98% for common, 92–96% for low frequency and 78–90% for rare variants). Our results suggest that haplotype phasing and genotype imputation mostly depend on population-specific contexts like appropriate reference panels and their sample size, but not on population-specific recombination maps. Even though recombination rate estimates had some differences between the Finnish and NFE populations, haplotyping and imputation had not been noticeably affected by the recombination map used. Therefore, the currently available HapMap recombination maps seem robust for population-specific phasing and imputation pipelines, even in the context of relatively isolated populations like Finland.
30 schema:genre article
31 schema:isAccessibleForFree true
32 schema:isPartOf N374ac3891a504e34a0c1c25939fd2218
33 Nbb5c606d2b54433ab87b56f56d3ef9db
34 sg:journal.1103410
35 schema:keywords Europeans
36 Finland
37 Finnish
38 Finnish rates
39 Finns
40 accuracy
41 analysis
42 appropriate reference panels
43 association
44 concordance rate
45 context
46 context of population
47 correlation
48 data
49 differences
50 downstream effects
51 downstream population genomic analyses
52 effect
53 estimates
54 family
55 genomic analysis
56 genotype imputation
57 haplotype phasing
58 haplotyping
59 high correlation
60 imputation
61 imputation pipeline
62 kb scale
63 mapping
64 maps
65 non-Finnish Europeans
66 panel
67 phasing
68 pipeline
69 population
70 population genomic analyses
71 population-specific contexts
72 population-specific recombination maps
73 population-specific reference panels
74 previous research
75 rate
76 rate estimates
77 rate mapping
78 recombination maps
79 recombination rate
80 recombination rate estimates
81 reference panel
82 research
83 results
84 same analysis
85 sample size
86 scale
87 sequenced data
88 significant effect
89 size
90 statistical phasing
91 schema:name High-resolution population-specific recombination rates and their effect on phasing and genotype imputation
92 schema:pagination 615-624
93 schema:productId N1ea9509dfa4a4e2fb636f3173bec6a67
94 N39b5c50e049b47b1857f1ed6b1173b01
95 Ncd714d61d13f447bb354f33be06a11ca
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132976983
97 https://doi.org/10.1038/s41431-020-00768-8
98 schema:sdDatePublished 2022-12-01T06:40
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N0d1e8a8554f44b45bbacf0e8816f14e3
101 schema:url https://doi.org/10.1038/s41431-020-00768-8
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N0156d21ff1464eae89fb5d82b52f1047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Recombination, Genetic
107 rdf:type schema:DefinedTerm
108 N0b748ae755014616b500dd66a115df7a rdf:first sg:person.01204465321.74
109 rdf:rest Nfad7895c8a864a5f971b680dcba5050e
110 N0d1e8a8554f44b45bbacf0e8816f14e3 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N16bb8b3df928469c97283bc23c94a1f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Finland
114 rdf:type schema:DefinedTerm
115 N1ea9509dfa4a4e2fb636f3173bec6a67 schema:name doi
116 schema:value 10.1038/s41431-020-00768-8
117 rdf:type schema:PropertyValue
118 N26ef2c1a92b14a7b80f58dc6b2e95c62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Genome-Wide Association Study
120 rdf:type schema:DefinedTerm
121 N36345f9c55e94685a1f562982a9627d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Genotyping Techniques
123 rdf:type schema:DefinedTerm
124 N374ac3891a504e34a0c1c25939fd2218 schema:volumeNumber 29
125 rdf:type schema:PublicationVolume
126 N39b5c50e049b47b1857f1ed6b1173b01 schema:name dimensions_id
127 schema:value pub.1132976983
128 rdf:type schema:PropertyValue
129 N6107c7f5f79342fc88564b21da23a47b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Humans
131 rdf:type schema:DefinedTerm
132 N746119f507294fbd9c7a213f6a81ee05 rdf:first sg:person.01022740164.96
133 rdf:rest N93a19bcfea814360827bcf83d6e362ff
134 N7af1f56023ab4cf9a02725eee94d14c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Genotype
136 rdf:type schema:DefinedTerm
137 N89f4c98fae5e46828db2546d0977cf7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Haplotypes
139 rdf:type schema:DefinedTerm
140 N9324b26bafdb4530bcfe46c489f0c4a5 rdf:first sg:person.01074100021.48
141 rdf:rest rdf:nil
142 N93a19bcfea814360827bcf83d6e362ff rdf:first sg:person.01104742263.37
143 rdf:rest Nfeca76b46dca412baf262aaf9a2ed977
144 N9890fb53ad034848971dff886ba5ffba rdf:first sg:person.01120564436.36
145 rdf:rest Nb5c80e18b6c642ecb7cbfd127c00d6e3
146 Naa332465ca714073904ce517507011fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Migraine Disorders
148 rdf:type schema:DefinedTerm
149 Nb5c80e18b6c642ecb7cbfd127c00d6e3 rdf:first sg:person.01053324561.81
150 rdf:rest Ne5d3c6bb612642ab88f58be69a910b36
151 Nb9e81bb2d98f4bfea3608aece8bc50e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Algorithms
153 rdf:type schema:DefinedTerm
154 Nbb5c606d2b54433ab87b56f56d3ef9db schema:issueNumber 4
155 rdf:type schema:PublicationIssue
156 Ncd714d61d13f447bb354f33be06a11ca schema:name pubmed_id
157 schema:value 33249422
158 rdf:type schema:PropertyValue
159 Nd96f0cdd7efe43fd843891c84f8eaed9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Population
161 rdf:type schema:DefinedTerm
162 Ne5d3c6bb612642ab88f58be69a910b36 rdf:first sg:person.012272201145.45
163 rdf:rest N746119f507294fbd9c7a213f6a81ee05
164 Ne7b61f2926054712b6f4446181b3bd2c rdf:first sg:person.01203401127.19
165 rdf:rest N9324b26bafdb4530bcfe46c489f0c4a5
166 Nfad7895c8a864a5f971b680dcba5050e rdf:first sg:person.01155762022.03
167 rdf:rest Ne7b61f2926054712b6f4446181b3bd2c
168 Nfeca76b46dca412baf262aaf9a2ed977 rdf:first sg:person.0635340434.00
169 rdf:rest N0b748ae755014616b500dd66a115df7a
170 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
171 schema:name Biological Sciences
172 rdf:type schema:DefinedTerm
173 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
174 schema:name Genetics
175 rdf:type schema:DefinedTerm
176 sg:grant.4249303 http://pending.schema.org/fundedItem sg:pub.10.1038/s41431-020-00768-8
177 rdf:type schema:MonetaryGrant
178 sg:grant.4249733 http://pending.schema.org/fundedItem sg:pub.10.1038/s41431-020-00768-8
179 rdf:type schema:MonetaryGrant
180 sg:grant.5324481 http://pending.schema.org/fundedItem sg:pub.10.1038/s41431-020-00768-8
181 rdf:type schema:MonetaryGrant
182 sg:grant.8839356 http://pending.schema.org/fundedItem sg:pub.10.1038/s41431-020-00768-8
183 rdf:type schema:MonetaryGrant
184 sg:journal.1103410 schema:issn 1018-4813
185 1476-5438
186 schema:name European Journal of Human Genetics
187 schema:publisher Springer Nature
188 rdf:type schema:Periodical
189 sg:person.01022740164.96 schema:affiliation grid-institutes:grid.14758.3f
190 schema:familyName Salomaa
191 schema:givenName Veikko
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022740164.96
193 rdf:type schema:Person
194 sg:person.01053324561.81 schema:affiliation grid-institutes:grid.452494.a
195 schema:familyName Surakka
196 schema:givenName Ida
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053324561.81
198 rdf:type schema:Person
199 sg:person.01074100021.48 schema:affiliation grid-institutes:grid.7737.4
200 schema:familyName Ripatti
201 schema:givenName Samuli
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074100021.48
203 rdf:type schema:Person
204 sg:person.01104742263.37 schema:affiliation grid-institutes:grid.66859.34
205 schema:familyName Palotie
206 schema:givenName Aarno
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104742263.37
208 rdf:type schema:Person
209 sg:person.01120564436.36 schema:affiliation grid-institutes:grid.452494.a
210 schema:familyName Hassan
211 schema:givenName Shabbeer
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120564436.36
213 rdf:type schema:Person
214 sg:person.01155762022.03 schema:affiliation grid-institutes:grid.7737.4
215 schema:familyName Pirinen
216 schema:givenName Matti
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155762022.03
218 rdf:type schema:Person
219 sg:person.01203401127.19 schema:affiliation grid-institutes:grid.10939.32
220 schema:familyName Palta
221 schema:givenName Priit
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203401127.19
223 rdf:type schema:Person
224 sg:person.01204465321.74 schema:affiliation grid-institutes:grid.452494.a
225 schema:familyName Tukiainen
226 schema:givenName Taru
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204465321.74
228 rdf:type schema:Person
229 sg:person.012272201145.45 schema:affiliation grid-institutes:grid.7737.4
230 schema:familyName Taskinen
231 schema:givenName Marja-Riitta
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012272201145.45
233 rdf:type schema:Person
234 sg:person.0635340434.00 schema:affiliation grid-institutes:grid.452494.a
235 schema:familyName Wessman
236 schema:givenName Maija
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635340434.00
238 rdf:type schema:Person
239 sg:pub.10.1038/hdy.2016.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039803795
240 https://doi.org/10.1038/hdy.2016.43
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nature07331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005519278
243 https://doi.org/10.1038/nature07331
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nature09525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030868615
246 https://doi.org/10.1038/nature09525
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nature11632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000661742
249 https://doi.org/10.1038/nature11632
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
252 https://doi.org/10.1038/nature15393
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/nature18964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025005893
255 https://doi.org/10.1038/nature18964
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/ng.3679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034000276
258 https://doi.org/10.1038/ng.3679
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/ng1001-229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026787741
261 https://doi.org/10.1038/ng1001-229
262 rdf:type schema:CreativeWork
263 sg:pub.10.1038/ng1770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017509144
264 https://doi.org/10.1038/ng1770
265 rdf:type schema:CreativeWork
266 sg:pub.10.1038/nmeth.2307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043747449
267 https://doi.org/10.1038/nmeth.2307
268 rdf:type schema:CreativeWork
269 sg:pub.10.1038/nrg2950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003279544
270 https://doi.org/10.1038/nrg2950
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/nrg3054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004015204
273 https://doi.org/10.1038/nrg3054
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/gb-2013-14-4-112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011414137
276 https://doi.org/10.1186/gb-2013-14-4-112
277 rdf:type schema:CreativeWork
278 grid-institutes:grid.10939.32 schema:alternateName Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
279 schema:name Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
280 Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
281 rdf:type schema:Organization
282 grid-institutes:grid.14758.3f schema:alternateName Finnish Institute for Health and Welfare, Helsinki, Finland
283 schema:name Finnish Institute for Health and Welfare, Helsinki, Finland
284 rdf:type schema:Organization
285 grid-institutes:grid.452494.a schema:alternateName Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
286 schema:name Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
287 rdf:type schema:Organization
288 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
289 schema:name Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
290 Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
291 Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
292 rdf:type schema:Organization
293 grid-institutes:grid.7737.4 schema:alternateName Clinical and molecular metabolism, Research program unit, University of Helsinki, Helsinki, Finland
294 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
295 Department of Public Health, Faculty of Medicine, Clinicum, University of Helsinki, Helsinki, Finland
296 schema:name Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
297 Clinical and molecular metabolism, Research program unit, University of Helsinki, Helsinki, Finland
298 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
299 Department of Public Health, Faculty of Medicine, Clinicum, University of Helsinki, Helsinki, Finland
300 Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
301 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...