An expanded analysis framework for multivariate GWAS connects inflammatory biomarkers to functional variants and disease View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-10-27

AUTHORS

Aarno Palotie, Mark Daly, Anu Loukola

ABSTRACT

Multivariate methods are known to increase the statistical power to detect associations in the case of shared genetic basis between phenotypes. They have, however, lacked essential analytic tools to follow-up and understand the biology underlying these associations. We developed a novel computational workflow for multivariate GWAS follow-up analyses, including fine-mapping and identification of the subset of traits driving associations (driver traits). Many follow-up tools require univariate regression coefficients which are lacking from multivariate results. Our method overcomes this problem by using Canonical Correlation Analysis to turn each multivariate association into its optimal univariate Linear Combination Phenotype (LCP). This enables an LCP-GWAS, which in turn generates the statistics required for follow-up analyses. We implemented our method on 12 highly correlated inflammatory biomarkers in a Finnish population-based study. Altogether, we identified 11 associations, four of which (F5, ABO, C1orf140 and PDGFRB) were not detected by biomarker-specific analyses. Fine-mapping identified 19 signals within the 11 loci and driver trait analysis determined the traits contributing to the associations. A phenome-wide association study on the 19 representative variants from the signals in 176,899 individuals from the FinnGen study revealed 53 disease associations (p < 1 × 10–4). Several reported pQTLs in the 11 loci provided orthogonal evidence for the biologically relevant functions of the representative variants. Our novel multivariate analysis workflow provides a powerful addition to standard univariate GWAS analyses by enabling multivariate GWAS follow-up and thus promoting the advancement of powerful multivariate methods in genomics. More... »

PAGES

309-324

References to SciGraph publications

  • 2014-01-22. A phase II trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas in JOURNAL OF NEURO-ONCOLOGY
  • 2016-03-23. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA in NATURE COMMUNICATIONS
  • 2017-06-28. Fine-mapping inflammatory bowel disease loci to single-variant resolution in NATURE
  • 2016-11-23. Overexpression of SerpinE2/protease nexin-1 Contribute to Pathological Cardiac Fibrosis via increasing Collagen Deposition in SCIENTIFIC REPORTS
  • 2018-08-13. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies in NATURE GENETICS
  • 2007-06. Cytokines in the pathogenesis of rheumatoid arthritis in NATURE REVIEWS IMMUNOLOGY
  • 2018-06-06. Genomic atlas of the human plasma proteome in NATURE
  • 2017-04-12. Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2017-10-30. Exome-wide association study of plasma lipids in >300,000 individuals in NATURE GENETICS
  • 2018-10-10. The UK Biobank resource with deep phenotyping and genomic data in NATURE
  • 2000-09. Angiogenesis in cancer and other diseases in NATURE
  • 2017-02-27. Connecting genetic risk to disease end points through the human blood plasma proteome in NATURE COMMUNICATIONS
  • 2020-05-27. The mutational constraint spectrum quantified from variation in 141,456 humans in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41431-020-00730-8

    DOI

    http://dx.doi.org/10.1038/s41431-020-00730-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1132050969

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/33110245


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Canonical Correlation Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cytokines", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Variation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Serpin E2", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Broad Institute, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland", 
                "Broad Institute, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Palotie", 
            "givenName": "Aarno", 
            "id": "sg:person.01104742263.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104742263.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute, Cambridge, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland", 
                "Broad Institute, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daly", 
            "givenName": "Mark", 
            "id": "sg:person.011517303117.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hospital District of Helsinki and Uusimaa, Helsinki, Finland", 
              "id": "http://www.grid.ac/institutes/grid.424664.6", 
              "name": [
                "Hospital District of Helsinki and Uusimaa, Helsinki, Finland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Loukola", 
            "givenName": "Anu", 
            "id": "sg:person.01034333505.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034333505.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11060-014-1358-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044581843", 
              "https://doi.org/10.1007/s11060-014-1358-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0579-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107363293", 
              "https://doi.org/10.1038/s41586-018-0579-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.3977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092440097", 
              "https://doi.org/10.1038/ng.3977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0175-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104306669", 
              "https://doi.org/10.1038/s41586-018-0175-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35025220", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043028620", 
              "https://doi.org/10.1038/35025220"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41588-018-0184-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106070347", 
              "https://doi.org/10.1038/s41588-018-0184-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nri2094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027912379", 
              "https://doi.org/10.1038/nri2094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128793", 
              "https://doi.org/10.1038/ncomms14357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2017.51", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084755074", 
              "https://doi.org/10.1038/ejhg.2017.51"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep37635", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019161885", 
              "https://doi.org/10.1038/srep37635"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034394716", 
              "https://doi.org/10.1038/ncomms11122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090278096", 
              "https://doi.org/10.1038/nature22969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-020-2308-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127885244", 
              "https://doi.org/10.1038/s41586-020-2308-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-10-27", 
        "datePublishedReg": "2020-10-27", 
        "description": "Multivariate methods are known to increase the statistical power to detect associations in the case of shared genetic basis between phenotypes. They have, however, lacked essential analytic tools to follow-up and understand the biology underlying these associations. We developed a novel computational workflow for multivariate GWAS follow-up analyses, including fine-mapping and identification of the subset of traits driving associations (driver traits). Many follow-up tools require univariate regression coefficients which are lacking from multivariate results. Our method overcomes this problem by using Canonical Correlation Analysis to turn each multivariate association into its optimal univariate Linear Combination Phenotype (LCP). This enables an LCP-GWAS, which in turn generates the statistics required for follow-up analyses. We implemented our method on 12 highly correlated inflammatory biomarkers in a Finnish population-based study. Altogether, we identified 11 associations, four of which (F5, ABO, C1orf140 and PDGFRB) were not detected by biomarker-specific analyses. Fine-mapping identified 19 signals within the 11 loci and driver trait analysis determined the traits contributing to the associations. A phenome-wide association study on the 19 representative variants from the signals in 176,899 individuals from the FinnGen study revealed 53 disease associations (p\u2009<\u20091\u2009\u00d7\u200910\u20134). Several reported pQTLs in the 11 loci provided orthogonal evidence for the biologically relevant functions of the representative variants. Our novel multivariate analysis workflow provides a powerful addition to standard univariate GWAS analyses by enabling multivariate GWAS follow-up and thus promoting the advancement of powerful multivariate methods in genomics.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41431-020-00730-8", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4250762", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4247484", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1103410", 
            "issn": [
              "1018-4813", 
              "1476-5438"
            ], 
            "name": "European Journal of Human Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "multivariate GWAS", 
          "powerful multivariate methods", 
          "essential analytic tool", 
          "multivariate methods", 
          "regression coefficients", 
          "statistical power", 
          "novel computational workflow", 
          "canonical correlation analysis", 
          "representative variants", 
          "combination phenotypes", 
          "analytic tools", 
          "analysis framework", 
          "statistics", 
          "GWAS analysis", 
          "Finnish population-based study", 
          "problem", 
          "computational workflow", 
          "powerful addition", 
          "signals", 
          "coefficient", 
          "FinnGen study", 
          "subset of traits", 
          "analysis workflow", 
          "tool", 
          "orthogonal evidence", 
          "framework", 
          "analysis", 
          "function", 
          "phenome-wide association study", 
          "power", 
          "relevant functions", 
          "genetic basis", 
          "multivariate associations", 
          "variants", 
          "trait analysis", 
          "association studies", 
          "cases", 
          "subset", 
          "GWAS", 
          "functional variants", 
          "results", 
          "loci", 
          "disease associations", 
          "correlation analysis", 
          "traits", 
          "workflow", 
          "basis", 
          "phenotype", 
          "pQTLs", 
          "genomics", 
          "multivariate results", 
          "biology", 
          "identification", 
          "turn", 
          "addition", 
          "study", 
          "biomarkers", 
          "advancement", 
          "association", 
          "evidence", 
          "individuals", 
          "disease", 
          "method", 
          "inflammatory biomarkers", 
          "population-based study"
        ], 
        "name": "An expanded analysis framework for multivariate GWAS connects inflammatory biomarkers to functional variants and disease", 
        "pagination": "309-324", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1132050969"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41431-020-00730-8"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "33110245"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41431-020-00730-8", 
          "https://app.dimensions.ai/details/publication/pub.1132050969"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_866.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41431-020-00730-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00730-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00730-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00730-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41431-020-00730-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    256 TRIPLES      21 PREDICATES      117 URIs      96 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41431-020-00730-8 schema:about N008c0bf5e0764504b83f172271958d89
    2 N04363c4d88c44cfd8f6809bdf118b6f4
    3 N4615089c68614bd2aac705f7989df694
    4 N551039582f2642c9948eb6a24e6f9f32
    5 N56052b34ef704075aa75000d85b94c84
    6 N617a58a31ba9493483e7c179b0521143
    7 N63071e09bff348638395e7352de7941b
    8 N76428738cefb4c2eb7bfe748013e717f
    9 N7e62a3db09df45d599e83567f9272f74
    10 N90170d964d1d4bc8ae172dce33bcb204
    11 N94700a0088b44c1698b97ba0518265dd
    12 Naca24fbca3bf4c9795e3c7913af64278
    13 Nb2c15f4021cd47eca92481c4b7c2999d
    14 Nd2ae23ef505747f3906f43dc0ce4a38e
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author Nf8de963db1594c6bbac75bbfbea06391
    18 schema:citation sg:pub.10.1007/s11060-014-1358-9
    19 sg:pub.10.1038/35025220
    20 sg:pub.10.1038/ejhg.2017.51
    21 sg:pub.10.1038/nature22969
    22 sg:pub.10.1038/ncomms11122
    23 sg:pub.10.1038/ncomms14357
    24 sg:pub.10.1038/ng.3977
    25 sg:pub.10.1038/nri2094
    26 sg:pub.10.1038/s41586-018-0175-2
    27 sg:pub.10.1038/s41586-018-0579-z
    28 sg:pub.10.1038/s41586-020-2308-7
    29 sg:pub.10.1038/s41588-018-0184-y
    30 sg:pub.10.1038/srep37635
    31 schema:datePublished 2020-10-27
    32 schema:datePublishedReg 2020-10-27
    33 schema:description Multivariate methods are known to increase the statistical power to detect associations in the case of shared genetic basis between phenotypes. They have, however, lacked essential analytic tools to follow-up and understand the biology underlying these associations. We developed a novel computational workflow for multivariate GWAS follow-up analyses, including fine-mapping and identification of the subset of traits driving associations (driver traits). Many follow-up tools require univariate regression coefficients which are lacking from multivariate results. Our method overcomes this problem by using Canonical Correlation Analysis to turn each multivariate association into its optimal univariate Linear Combination Phenotype (LCP). This enables an LCP-GWAS, which in turn generates the statistics required for follow-up analyses. We implemented our method on 12 highly correlated inflammatory biomarkers in a Finnish population-based study. Altogether, we identified 11 associations, four of which (F5, ABO, C1orf140 and PDGFRB) were not detected by biomarker-specific analyses. Fine-mapping identified 19 signals within the 11 loci and driver trait analysis determined the traits contributing to the associations. A phenome-wide association study on the 19 representative variants from the signals in 176,899 individuals from the FinnGen study revealed 53 disease associations (p < 1 × 10–4). Several reported pQTLs in the 11 loci provided orthogonal evidence for the biologically relevant functions of the representative variants. Our novel multivariate analysis workflow provides a powerful addition to standard univariate GWAS analyses by enabling multivariate GWAS follow-up and thus promoting the advancement of powerful multivariate methods in genomics.
    34 schema:genre article
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N0003fdc298f54f58b956679ca2ae8003
    37 N8cb0b9a4e2ec4fa588f4882bb09a246c
    38 sg:journal.1103410
    39 schema:keywords FinnGen study
    40 Finnish population-based study
    41 GWAS
    42 GWAS analysis
    43 addition
    44 advancement
    45 analysis
    46 analysis framework
    47 analysis workflow
    48 analytic tools
    49 association
    50 association studies
    51 basis
    52 biology
    53 biomarkers
    54 canonical correlation analysis
    55 cases
    56 coefficient
    57 combination phenotypes
    58 computational workflow
    59 correlation analysis
    60 disease
    61 disease associations
    62 essential analytic tool
    63 evidence
    64 framework
    65 function
    66 functional variants
    67 genetic basis
    68 genomics
    69 identification
    70 individuals
    71 inflammatory biomarkers
    72 loci
    73 method
    74 multivariate GWAS
    75 multivariate associations
    76 multivariate methods
    77 multivariate results
    78 novel computational workflow
    79 orthogonal evidence
    80 pQTLs
    81 phenome-wide association study
    82 phenotype
    83 population-based study
    84 power
    85 powerful addition
    86 powerful multivariate methods
    87 problem
    88 regression coefficients
    89 relevant functions
    90 representative variants
    91 results
    92 signals
    93 statistical power
    94 statistics
    95 study
    96 subset
    97 subset of traits
    98 tool
    99 trait analysis
    100 traits
    101 turn
    102 variants
    103 workflow
    104 schema:name An expanded analysis framework for multivariate GWAS connects inflammatory biomarkers to functional variants and disease
    105 schema:pagination 309-324
    106 schema:productId N106fccf6408b45f882c1a456237564cf
    107 N41bd2fe4f3964c20ad8633b2be7072f7
    108 Na939c11042284fb387ea87ba9bfeea5e
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132050969
    110 https://doi.org/10.1038/s41431-020-00730-8
    111 schema:sdDatePublished 2022-10-01T06:47
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher Nf6b840a11209433ab2a9fcdb5f4967ea
    114 schema:url https://doi.org/10.1038/s41431-020-00730-8
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N0003fdc298f54f58b956679ca2ae8003 schema:volumeNumber 29
    119 rdf:type schema:PublicationVolume
    120 N008c0bf5e0764504b83f172271958d89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Humans
    122 rdf:type schema:DefinedTerm
    123 N04363c4d88c44cfd8f6809bdf118b6f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Canonical Correlation Analysis
    125 rdf:type schema:DefinedTerm
    126 N106fccf6408b45f882c1a456237564cf schema:name dimensions_id
    127 schema:value pub.1132050969
    128 rdf:type schema:PropertyValue
    129 N41bd2fe4f3964c20ad8633b2be7072f7 schema:name doi
    130 schema:value 10.1038/s41431-020-00730-8
    131 rdf:type schema:PropertyValue
    132 N4615089c68614bd2aac705f7989df694 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Male
    134 rdf:type schema:DefinedTerm
    135 N551039582f2642c9948eb6a24e6f9f32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Genomics
    137 rdf:type schema:DefinedTerm
    138 N56052b34ef704075aa75000d85b94c84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    139 schema:name Aged
    140 rdf:type schema:DefinedTerm
    141 N617a58a31ba9493483e7c179b0521143 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Biomarkers
    143 rdf:type schema:DefinedTerm
    144 N63071e09bff348638395e7352de7941b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Phenotype
    146 rdf:type schema:DefinedTerm
    147 N76428738cefb4c2eb7bfe748013e717f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Middle Aged
    149 rdf:type schema:DefinedTerm
    150 N7e62a3db09df45d599e83567f9272f74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Genetic Variation
    152 rdf:type schema:DefinedTerm
    153 N8cb0b9a4e2ec4fa588f4882bb09a246c schema:issueNumber 2
    154 rdf:type schema:PublicationIssue
    155 N90170d964d1d4bc8ae172dce33bcb204 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Female
    157 rdf:type schema:DefinedTerm
    158 N94700a0088b44c1698b97ba0518265dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Genome-Wide Association Study
    160 rdf:type schema:DefinedTerm
    161 Na939c11042284fb387ea87ba9bfeea5e schema:name pubmed_id
    162 schema:value 33110245
    163 rdf:type schema:PropertyValue
    164 Naca24fbca3bf4c9795e3c7913af64278 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Cytokines
    166 rdf:type schema:DefinedTerm
    167 Nb2c15f4021cd47eca92481c4b7c2999d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Disease
    169 rdf:type schema:DefinedTerm
    170 Nd2ae23ef505747f3906f43dc0ce4a38e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Serpin E2
    172 rdf:type schema:DefinedTerm
    173 Nd71ae883b16b40ac8794969652783122 rdf:first sg:person.011517303117.07
    174 rdf:rest Nff0d74b26e434c5098c7dba474356621
    175 Nf6b840a11209433ab2a9fcdb5f4967ea schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 Nf8de963db1594c6bbac75bbfbea06391 rdf:first sg:person.01104742263.37
    178 rdf:rest Nd71ae883b16b40ac8794969652783122
    179 Nff0d74b26e434c5098c7dba474356621 rdf:first sg:person.01034333505.72
    180 rdf:rest rdf:nil
    181 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Biological Sciences
    183 rdf:type schema:DefinedTerm
    184 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    185 schema:name Genetics
    186 rdf:type schema:DefinedTerm
    187 sg:grant.4247484 http://pending.schema.org/fundedItem sg:pub.10.1038/s41431-020-00730-8
    188 rdf:type schema:MonetaryGrant
    189 sg:grant.4250762 http://pending.schema.org/fundedItem sg:pub.10.1038/s41431-020-00730-8
    190 rdf:type schema:MonetaryGrant
    191 sg:journal.1103410 schema:issn 1018-4813
    192 1476-5438
    193 schema:name European Journal of Human Genetics
    194 schema:publisher Springer Nature
    195 rdf:type schema:Periodical
    196 sg:person.01034333505.72 schema:affiliation grid-institutes:grid.424664.6
    197 schema:familyName Loukola
    198 schema:givenName Anu
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034333505.72
    200 rdf:type schema:Person
    201 sg:person.01104742263.37 schema:affiliation grid-institutes:grid.66859.34
    202 schema:familyName Palotie
    203 schema:givenName Aarno
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104742263.37
    205 rdf:type schema:Person
    206 sg:person.011517303117.07 schema:affiliation grid-institutes:grid.66859.34
    207 schema:familyName Daly
    208 schema:givenName Mark
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517303117.07
    210 rdf:type schema:Person
    211 sg:pub.10.1007/s11060-014-1358-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044581843
    212 https://doi.org/10.1007/s11060-014-1358-9
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/35025220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043028620
    215 https://doi.org/10.1038/35025220
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/ejhg.2017.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084755074
    218 https://doi.org/10.1038/ejhg.2017.51
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nature22969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090278096
    221 https://doi.org/10.1038/nature22969
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/ncomms11122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034394716
    224 https://doi.org/10.1038/ncomms11122
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/ncomms14357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128793
    227 https://doi.org/10.1038/ncomms14357
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/ng.3977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092440097
    230 https://doi.org/10.1038/ng.3977
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nri2094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027912379
    233 https://doi.org/10.1038/nri2094
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41586-018-0175-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104306669
    236 https://doi.org/10.1038/s41586-018-0175-2
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/s41586-018-0579-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1107363293
    239 https://doi.org/10.1038/s41586-018-0579-z
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/s41586-020-2308-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127885244
    242 https://doi.org/10.1038/s41586-020-2308-7
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/s41588-018-0184-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1106070347
    245 https://doi.org/10.1038/s41588-018-0184-y
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/srep37635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019161885
    248 https://doi.org/10.1038/srep37635
    249 rdf:type schema:CreativeWork
    250 grid-institutes:grid.424664.6 schema:alternateName Hospital District of Helsinki and Uusimaa, Helsinki, Finland
    251 schema:name Hospital District of Helsinki and Uusimaa, Helsinki, Finland
    252 rdf:type schema:Organization
    253 grid-institutes:grid.66859.34 schema:alternateName Broad Institute, Cambridge, MA, USA
    254 schema:name Broad Institute, Cambridge, MA, USA
    255 Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
    256 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...