Gestational weight gain targets during the second and third trimesters of pregnancy for women with gestational diabetes mellitus in China View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-30

AUTHORS

Jiang-Nan Wu, Wei-Rong Gu, Xi-Rong Xiao, Yi Zhang, Xiao-Tian Li, Chuan-Min Yin

ABSTRACT

BACKGROUND/OBJECTIVES: Gestational weight gain (GWG) recommendations for pregnant women with gestational diabetes mellitus (GDM) in China are lacking. The present study aims to examine whether specific GWG targets for women with GDM can improve pregnancy outcomes in comparison with GWG according to the Institute of Medicine (IOM) targets. SUBJECTS/METHODS: Pregnant women diagnosed with GDM were selected from a retrospective cohort study of 8299 singleton pregnant women aged 18-45 years in 2012 (n = 1820). GWG ranges were calculated using a receiver operating characteristic (ROC) curve analysis (ROC targets) and the interquartile range (IR) method (the range from the 25th to 75th percentiles of the GWG among GDM women without adverse pregnancy outcomes, IR targets). RESULTS: The incidences of small for gestational age (SGA) births and pregnancy hypertension among women with GDM who gained weight within the ROC targets were lower than the incidences in women who gained weight within the IOM targets (SGA, 7.5% vs. 8.6%; pregnancy hypertension, 12.6% vs. 14.1%; both P < 0.05). GWG was associated with a risk of adverse pregnancy outcomes in the total sample (estimated values ranged from -2.95 to 2.08, all P < 0.05). No statistically significant associations between GWG and adverse pregnancy outcomes were observed in subgroups of pregnant women with appropriate GWGs according to the ROC, IR, and IOM targets. The ROC targets exhibited higher negative predictive values for adverse pregnancy outcomes than the IR and IOM targets. CONCLUSION: The ROC targets improved pregnancy outcomes and thus represent potential special GWG guidelines for women with GDM in China. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41430-018-0358-9

DOI

http://dx.doi.org/10.1038/s41430-018-0358-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107908147

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30375492


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Paediatrics and Reproductive Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Obstetrics and Gynecology Hospital of Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.412312.7", 
          "name": [
            "Department of Clinical Epidemiology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jiang-Nan", 
        "id": "sg:person.01211060037.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211060037.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Obstetrics and Gynecology Hospital of Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.412312.7", 
          "name": [
            "Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Wei-Rong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Obstetrics and Gynecology Hospital of Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.412312.7", 
          "name": [
            "Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Xi-Rong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Children's Hospital of Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.411333.7", 
          "name": [
            "Department of Clinical Epidemiology, Children\u2019s Hospital of Fudan University, 200025, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Obstetrics and Gynecology Hospital of Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.412312.7", 
          "name": [
            "Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xiao-Tian", 
        "id": "sg:person.015263764253.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263764253.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Obstetrics and Gynecology Hospital of Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.412312.7", 
          "name": [
            "Department of Nutrition, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Chuan-Min", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/mcn.12374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003494443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/01443615.2013.832177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005207089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000001773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008003947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/aog.0000000000001773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008003947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11892-016-0821-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008290126", 
          "https://doi.org/10.1007/s11892-016-0821-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11892-016-0821-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008290126", 
          "https://doi.org/10.1007/s11892-016-0821-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(09)60515-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009487045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aog.0000278819.17190.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009619532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/01.aog.0000278819.17190.87", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009619532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jdiacomp.2016.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012946103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2014.293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016734052", 
          "https://doi.org/10.1038/ejcn.2014.293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc08-1038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017853684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0121029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018512347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc12-2624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022933147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajog.2006.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026147409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)60932-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026821342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aogs.13048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027630144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep37168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028538979", 
          "https://doi.org/10.1038/srep37168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3945/ajcn.2009.29008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032191729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0007114515000707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033242649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrendo.2016.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037584898", 
          "https://doi.org/10.1038/nrendo.2016.88"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ejcn.2015.145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040144037", 
          "https://doi.org/10.1038/ejcn.2015.145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-016-0176-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041270588", 
          "https://doi.org/10.1007/s10654-016-0176-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10654-016-0176-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041270588", 
          "https://doi.org/10.1007/s10654-016-0176-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc16-er09", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043191276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/14651858.cd007145.pub3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045039890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2337/dc10-0719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047466811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-016-4173-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049481181", 
          "https://doi.org/10.1007/s00125-016-4173-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00125-016-4173-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049481181", 
          "https://doi.org/10.1007/s00125-016-4173-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075053546", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078783471", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078963868", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2017.3635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085885835"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-30", 
    "datePublishedReg": "2018-10-30", 
    "description": "BACKGROUND/OBJECTIVES: Gestational weight gain (GWG) recommendations for pregnant women with gestational diabetes mellitus (GDM) in China are lacking. The present study aims to examine whether specific GWG targets for women with GDM can improve pregnancy outcomes in comparison with GWG according to the Institute of Medicine (IOM) targets.\nSUBJECTS/METHODS: Pregnant women diagnosed with GDM were selected from a retrospective cohort study of 8299 singleton pregnant women aged 18-45 years in 2012 (n\u2009=\u20091820). GWG ranges were calculated using a receiver operating characteristic (ROC) curve analysis (ROC targets) and the interquartile range (IR) method (the range from the 25th to 75th percentiles of the GWG among GDM women without adverse pregnancy outcomes, IR targets).\nRESULTS: The incidences of small for gestational age (SGA) births and pregnancy hypertension among women with GDM who gained weight within the ROC targets were lower than the incidences in women who gained weight within the IOM targets (SGA, 7.5% vs. 8.6%; pregnancy hypertension, 12.6% vs. 14.1%; both P\u2009<\u20090.05). GWG was associated with a risk of adverse pregnancy outcomes in the total sample (estimated values ranged from -2.95 to 2.08, all P\u2009<\u20090.05). No statistically significant associations between GWG and adverse pregnancy outcomes were observed in subgroups of pregnant women with appropriate GWGs according to the ROC, IR, and IOM targets. The ROC targets exhibited higher negative predictive values for adverse pregnancy outcomes than the IR and IOM targets.\nCONCLUSION: The ROC targets improved pregnancy outcomes and thus represent potential special GWG guidelines for women with GDM in China.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41430-018-0358-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1097936", 
        "issn": [
          "0954-3007", 
          "1476-5640"
        ], 
        "name": "European Journal of Clinical Nutrition", 
        "type": "Periodical"
      }
    ], 
    "name": "Gestational weight gain targets during the second and third trimesters of pregnancy for women with gestational diabetes mellitus in China", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c705c54ed4daeeb969412f900c3aecbe01bdd2d83b0e5fbb1f72af72c0f85850"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30375492"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8804070"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41430-018-0358-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107908147"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41430-018-0358-9", 
      "https://app.dimensions.ai/details/publication/pub.1107908147"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000573.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41430-018-0358-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41430-018-0358-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41430-018-0358-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41430-018-0358-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41430-018-0358-9'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      54 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41430-018-0358-9 schema:about anzsrc-for:11
2 anzsrc-for:1114
3 schema:author N21502a4a080646e09adc423c89b3bfe2
4 schema:citation sg:pub.10.1007/s00125-016-4173-3
5 sg:pub.10.1007/s10654-016-0176-0
6 sg:pub.10.1007/s11892-016-0821-8
7 sg:pub.10.1038/ejcn.2014.293
8 sg:pub.10.1038/ejcn.2015.145
9 sg:pub.10.1038/nrendo.2016.88
10 sg:pub.10.1038/srep37168
11 https://app.dimensions.ai/details/publication/pub.1075053546
12 https://app.dimensions.ai/details/publication/pub.1078783471
13 https://app.dimensions.ai/details/publication/pub.1078963868
14 https://doi.org/10.1001/jama.2017.3635
15 https://doi.org/10.1002/14651858.cd007145.pub3
16 https://doi.org/10.1016/j.ajog.2006.03.007
17 https://doi.org/10.1016/j.jdiacomp.2016.10.016
18 https://doi.org/10.1016/s0140-6736(09)60515-8
19 https://doi.org/10.1016/s0140-6736(14)60932-6
20 https://doi.org/10.1017/s0007114515000707
21 https://doi.org/10.1097/01.aog.0000278819.17190.87
22 https://doi.org/10.1097/aog.0000000000001773
23 https://doi.org/10.1111/aogs.13048
24 https://doi.org/10.1111/mcn.12374
25 https://doi.org/10.1371/journal.pone.0121029
26 https://doi.org/10.2337/dc08-1038
27 https://doi.org/10.2337/dc10-0719
28 https://doi.org/10.2337/dc12-2624
29 https://doi.org/10.2337/dc16-er09
30 https://doi.org/10.3109/01443615.2013.832177
31 https://doi.org/10.3945/ajcn.2009.29008
32 schema:datePublished 2018-10-30
33 schema:datePublishedReg 2018-10-30
34 schema:description BACKGROUND/OBJECTIVES: Gestational weight gain (GWG) recommendations for pregnant women with gestational diabetes mellitus (GDM) in China are lacking. The present study aims to examine whether specific GWG targets for women with GDM can improve pregnancy outcomes in comparison with GWG according to the Institute of Medicine (IOM) targets. SUBJECTS/METHODS: Pregnant women diagnosed with GDM were selected from a retrospective cohort study of 8299 singleton pregnant women aged 18-45 years in 2012 (n = 1820). GWG ranges were calculated using a receiver operating characteristic (ROC) curve analysis (ROC targets) and the interquartile range (IR) method (the range from the 25th to 75th percentiles of the GWG among GDM women without adverse pregnancy outcomes, IR targets). RESULTS: The incidences of small for gestational age (SGA) births and pregnancy hypertension among women with GDM who gained weight within the ROC targets were lower than the incidences in women who gained weight within the IOM targets (SGA, 7.5% vs. 8.6%; pregnancy hypertension, 12.6% vs. 14.1%; both P < 0.05). GWG was associated with a risk of adverse pregnancy outcomes in the total sample (estimated values ranged from -2.95 to 2.08, all P < 0.05). No statistically significant associations between GWG and adverse pregnancy outcomes were observed in subgroups of pregnant women with appropriate GWGs according to the ROC, IR, and IOM targets. The ROC targets exhibited higher negative predictive values for adverse pregnancy outcomes than the IR and IOM targets. CONCLUSION: The ROC targets improved pregnancy outcomes and thus represent potential special GWG guidelines for women with GDM in China.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf sg:journal.1097936
39 schema:name Gestational weight gain targets during the second and third trimesters of pregnancy for women with gestational diabetes mellitus in China
40 schema:pagination 1-9
41 schema:productId N3b0d4ba0b371487ca251135de0e9ae02
42 N5ad2e3f8b15f4268a7f91f6bc0de5bec
43 Nb47657bbadf24fec8c8ee16ad2fa3b9f
44 Nd4f5e3b1c6084526bd62cc8cc4ee31c4
45 Ndd3334beb5a34139a403a13c0fe9c857
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107908147
47 https://doi.org/10.1038/s41430-018-0358-9
48 schema:sdDatePublished 2019-04-10T13:28
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ne35e80aa51a14911b944da5d7b1fbc85
51 schema:url https://www.nature.com/articles/s41430-018-0358-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N03492e2d9edd4a939aa2db9293188bbe schema:affiliation https://www.grid.ac/institutes/grid.412312.7
56 schema:familyName Xiao
57 schema:givenName Xi-Rong
58 rdf:type schema:Person
59 N04c6ccd5104049c8943edbdf4639dec4 schema:affiliation https://www.grid.ac/institutes/grid.412312.7
60 schema:familyName Gu
61 schema:givenName Wei-Rong
62 rdf:type schema:Person
63 N0cc1fc8f98ec4cfea1948be0280fddf4 rdf:first N03492e2d9edd4a939aa2db9293188bbe
64 rdf:rest N32bfd7f5444c4b1cb784434999c1ee1e
65 N21502a4a080646e09adc423c89b3bfe2 rdf:first sg:person.01211060037.09
66 rdf:rest N9bf4ae2e0a1f413f8c2e82753ca41241
67 N2437402023394830888540144251845c rdf:first N6e6e1f8993b541dd823909895b512dab
68 rdf:rest rdf:nil
69 N32bfd7f5444c4b1cb784434999c1ee1e rdf:first N34292b2fa8b2409ebd9f2823be10e787
70 rdf:rest N6ee1baec35574a738c0666b3dc75168d
71 N34292b2fa8b2409ebd9f2823be10e787 schema:affiliation https://www.grid.ac/institutes/grid.411333.7
72 schema:familyName Zhang
73 schema:givenName Yi
74 rdf:type schema:Person
75 N3b0d4ba0b371487ca251135de0e9ae02 schema:name nlm_unique_id
76 schema:value 8804070
77 rdf:type schema:PropertyValue
78 N5ad2e3f8b15f4268a7f91f6bc0de5bec schema:name doi
79 schema:value 10.1038/s41430-018-0358-9
80 rdf:type schema:PropertyValue
81 N6e6e1f8993b541dd823909895b512dab schema:affiliation https://www.grid.ac/institutes/grid.412312.7
82 schema:familyName Yin
83 schema:givenName Chuan-Min
84 rdf:type schema:Person
85 N6ee1baec35574a738c0666b3dc75168d rdf:first sg:person.015263764253.90
86 rdf:rest N2437402023394830888540144251845c
87 N9bf4ae2e0a1f413f8c2e82753ca41241 rdf:first N04c6ccd5104049c8943edbdf4639dec4
88 rdf:rest N0cc1fc8f98ec4cfea1948be0280fddf4
89 Nb47657bbadf24fec8c8ee16ad2fa3b9f schema:name readcube_id
90 schema:value c705c54ed4daeeb969412f900c3aecbe01bdd2d83b0e5fbb1f72af72c0f85850
91 rdf:type schema:PropertyValue
92 Nd4f5e3b1c6084526bd62cc8cc4ee31c4 schema:name pubmed_id
93 schema:value 30375492
94 rdf:type schema:PropertyValue
95 Ndd3334beb5a34139a403a13c0fe9c857 schema:name dimensions_id
96 schema:value pub.1107908147
97 rdf:type schema:PropertyValue
98 Ne35e80aa51a14911b944da5d7b1fbc85 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
101 schema:name Medical and Health Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
104 schema:name Paediatrics and Reproductive Medicine
105 rdf:type schema:DefinedTerm
106 sg:journal.1097936 schema:issn 0954-3007
107 1476-5640
108 schema:name European Journal of Clinical Nutrition
109 rdf:type schema:Periodical
110 sg:person.01211060037.09 schema:affiliation https://www.grid.ac/institutes/grid.412312.7
111 schema:familyName Wu
112 schema:givenName Jiang-Nan
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211060037.09
114 rdf:type schema:Person
115 sg:person.015263764253.90 schema:affiliation https://www.grid.ac/institutes/grid.412312.7
116 schema:familyName Li
117 schema:givenName Xiao-Tian
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015263764253.90
119 rdf:type schema:Person
120 sg:pub.10.1007/s00125-016-4173-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049481181
121 https://doi.org/10.1007/s00125-016-4173-3
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10654-016-0176-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041270588
124 https://doi.org/10.1007/s10654-016-0176-0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11892-016-0821-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008290126
127 https://doi.org/10.1007/s11892-016-0821-8
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/ejcn.2014.293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016734052
130 https://doi.org/10.1038/ejcn.2014.293
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ejcn.2015.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040144037
133 https://doi.org/10.1038/ejcn.2015.145
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nrendo.2016.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037584898
136 https://doi.org/10.1038/nrendo.2016.88
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/srep37168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028538979
139 https://doi.org/10.1038/srep37168
140 rdf:type schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1075053546 schema:CreativeWork
142 https://app.dimensions.ai/details/publication/pub.1078783471 schema:CreativeWork
143 https://app.dimensions.ai/details/publication/pub.1078963868 schema:CreativeWork
144 https://doi.org/10.1001/jama.2017.3635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085885835
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/14651858.cd007145.pub3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045039890
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ajog.2006.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026147409
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jdiacomp.2016.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012946103
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0140-6736(09)60515-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009487045
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0140-6736(14)60932-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026821342
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1017/s0007114515000707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033242649
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1097/01.aog.0000278819.17190.87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009619532
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1097/aog.0000000000001773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008003947
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1111/aogs.13048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027630144
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/mcn.12374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003494443
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1371/journal.pone.0121029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018512347
167 rdf:type schema:CreativeWork
168 https://doi.org/10.2337/dc08-1038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017853684
169 rdf:type schema:CreativeWork
170 https://doi.org/10.2337/dc10-0719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047466811
171 rdf:type schema:CreativeWork
172 https://doi.org/10.2337/dc12-2624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022933147
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2337/dc16-er09 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043191276
175 rdf:type schema:CreativeWork
176 https://doi.org/10.3109/01443615.2013.832177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005207089
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3945/ajcn.2009.29008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032191729
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.411333.7 schema:alternateName Children's Hospital of Fudan University
181 schema:name Department of Clinical Epidemiology, Children’s Hospital of Fudan University, 200025, Shanghai, China
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.412312.7 schema:alternateName Obstetrics and Gynecology Hospital of Fudan University
184 schema:name Department of Clinical Epidemiology, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China
185 Department of Nutrition, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China
186 Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, 200011, Shanghai, China
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...