Effect of polymer type on the performance of a nanofiber mat actuator View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Hanako Asai, Tomotaka Okumura, Hiroaki Sakamoto, Koji Nakane

ABSTRACT

We fabricated actuators consisting of an ionic liquid gel electrolyte layer sandwiched between two nanofiber mat electrodes and studied the relationship between the polymer type of the nanofiber mat and the performance of the actuator. We selected poly(urethane) (PU), poly(methyl methacrylate), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the materials for the nanofiber mat electrodes. The PU nanofiber mat actuator exhibited the largest deformation, whereas the PVDF-HFP mat actuator exhibited the smallest deformation. The performance of the actuator was determined on the basis of cyclic voltammetry and alternating current impedance measurements. We fabricated actuators consisting of an ionic liquid gel electrolyte layer sandwiched between two nanofiber mat electrodes and studied the relationship between the polymer type of the nanofiber mat and the performance of the actuator. We selected poly(urethane) (PU), poly(methyl methacrylate) (PMMA), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the materials for the nanofiber mat electrodes. The performance of the actuator was determined on the basis of cyclic voltammetry and AC impedance measurements. More... »

PAGES

1-6

References to SciGraph publications

  • 2014-02. Electro-active polymer actuator based on PVDF with bacterial cellulose nano-whiskers (BCNW) via electrospinning method in INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING
  • Journal

    TITLE

    Polymer Journal

    ISSUE

    5

    VOLUME

    51

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41428-018-0160-5

    DOI

    http://dx.doi.org/10.1038/s41428-018-0160-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110706147


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Fukui", 
              "id": "https://www.grid.ac/institutes/grid.163577.1", 
              "name": [
                "Frontier Fiber Technology and Science Course, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Asai", 
            "givenName": "Hanako", 
            "id": "sg:person.010665325731.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665325731.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Fukui", 
              "id": "https://www.grid.ac/institutes/grid.163577.1", 
              "name": [
                "Frontier Fiber Technology and Science Course, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okumura", 
            "givenName": "Tomotaka", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Fukui", 
              "id": "https://www.grid.ac/institutes/grid.163577.1", 
              "name": [
                "Frontier Fiber Technology and Science Course, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sakamoto", 
            "givenName": "Hiroaki", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Fukui", 
              "id": "https://www.grid.ac/institutes/grid.163577.1", 
              "name": [
                "Frontier Fiber Technology and Science Course, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakane", 
            "givenName": "Koji", 
            "id": "sg:person.015055601425.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015055601425.87"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.snb.2013.12.059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011715707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0379-6779(01)00576-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012606001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2009.06.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020889070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.snb.2015.02.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025785778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12541-014-0340-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028577627", 
              "https://doi.org/10.1007/s12541-014-0340-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4028/www.scientific.net/amr.1105.311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031419209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3ta11726j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038714552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymer.2015.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044522304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.polymer.2015.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044522304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/pi.4562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053332067"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp301501c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056088294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1587/transele.e98.c.411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068088969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2115/fiberst.2017-0019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085963401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c8cc01670d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101775489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c8ra02714e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103989803"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-05", 
        "datePublishedReg": "2019-05-01", 
        "description": "We fabricated actuators consisting of an ionic liquid gel electrolyte layer sandwiched between two nanofiber mat electrodes and studied the relationship between the polymer type of the nanofiber mat and the performance of the actuator. We selected poly(urethane) (PU), poly(methyl methacrylate), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the materials for the nanofiber mat electrodes. The PU nanofiber mat actuator exhibited the largest deformation, whereas the PVDF-HFP mat actuator exhibited the smallest deformation. The performance of the actuator was determined on the basis of cyclic voltammetry and alternating current impedance measurements. We fabricated actuators consisting of an ionic liquid gel electrolyte layer sandwiched between two nanofiber mat electrodes and studied the relationship between the polymer type of the nanofiber mat and the performance of the actuator. We selected poly(urethane) (PU), poly(methyl methacrylate) (PMMA), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the materials for the nanofiber mat electrodes. The performance of the actuator was determined on the basis of cyclic voltammetry and AC impedance measurements. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41428-018-0160-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1043822", 
            "issn": [
              "0032-3896", 
              "1349-0540"
            ], 
            "name": "Polymer Journal", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "51"
          }
        ], 
        "name": "Effect of polymer type on the performance of a nanofiber mat actuator", 
        "pagination": "1-6", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41428-018-0160-5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e6d148c1d1ccc4989be764a8c5db3e4d01dc1d5745dec45faa847a2c20bf7ac2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110706147"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41428-018-0160-5", 
          "https://app.dimensions.ai/details/publication/pub.1110706147"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56173_00000006.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41428-018-0160-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41428-018-0160-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41428-018-0160-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41428-018-0160-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41428-018-0160-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    123 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41428-018-0160-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N6b197baecf3a4f6cb2325cd255f2f11d
    4 schema:citation sg:pub.10.1007/s12541-014-0340-y
    5 https://doi.org/10.1002/pi.4562
    6 https://doi.org/10.1016/j.polymer.2015.09.004
    7 https://doi.org/10.1016/j.snb.2009.06.002
    8 https://doi.org/10.1016/j.snb.2013.12.059
    9 https://doi.org/10.1016/j.snb.2015.02.129
    10 https://doi.org/10.1016/s0379-6779(01)00576-8
    11 https://doi.org/10.1021/jp301501c
    12 https://doi.org/10.1039/c3ta11726j
    13 https://doi.org/10.1039/c8cc01670d
    14 https://doi.org/10.1039/c8ra02714e
    15 https://doi.org/10.1587/transele.e98.c.411
    16 https://doi.org/10.2115/fiberst.2017-0019
    17 https://doi.org/10.4028/www.scientific.net/amr.1105.311
    18 schema:datePublished 2019-05
    19 schema:datePublishedReg 2019-05-01
    20 schema:description We fabricated actuators consisting of an ionic liquid gel electrolyte layer sandwiched between two nanofiber mat electrodes and studied the relationship between the polymer type of the nanofiber mat and the performance of the actuator. We selected poly(urethane) (PU), poly(methyl methacrylate), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the materials for the nanofiber mat electrodes. The PU nanofiber mat actuator exhibited the largest deformation, whereas the PVDF-HFP mat actuator exhibited the smallest deformation. The performance of the actuator was determined on the basis of cyclic voltammetry and alternating current impedance measurements. We fabricated actuators consisting of an ionic liquid gel electrolyte layer sandwiched between two nanofiber mat electrodes and studied the relationship between the polymer type of the nanofiber mat and the performance of the actuator. We selected poly(urethane) (PU), poly(methyl methacrylate) (PMMA), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) as the materials for the nanofiber mat electrodes. The performance of the actuator was determined on the basis of cyclic voltammetry and AC impedance measurements.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N4a3325ab6ead4bfdbffb09bedf5a9555
    25 Nf9669415601747a7b84e1fe7ba96b084
    26 sg:journal.1043822
    27 schema:name Effect of polymer type on the performance of a nanofiber mat actuator
    28 schema:pagination 1-6
    29 schema:productId N29b208d70df84afa8dd60b8c34e89598
    30 Ne3422818c89d4e15b9b334798cc54185
    31 Nf3d4065cde0f4acf85fa07b7ae7e10e9
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110706147
    33 https://doi.org/10.1038/s41428-018-0160-5
    34 schema:sdDatePublished 2019-04-15T09:18
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N4ddf5daa82574bfc8256140c9b96f76f
    37 schema:url https://www.nature.com/articles/s41428-018-0160-5
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N29b208d70df84afa8dd60b8c34e89598 schema:name readcube_id
    42 schema:value e6d148c1d1ccc4989be764a8c5db3e4d01dc1d5745dec45faa847a2c20bf7ac2
    43 rdf:type schema:PropertyValue
    44 N4a3325ab6ead4bfdbffb09bedf5a9555 schema:issueNumber 5
    45 rdf:type schema:PublicationIssue
    46 N4ddf5daa82574bfc8256140c9b96f76f schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 N6b197baecf3a4f6cb2325cd255f2f11d rdf:first sg:person.010665325731.55
    49 rdf:rest Nc59f79c365174ced93163ce9c5d065e5
    50 N7deed7335a5a4b59954d0e5126279bcc schema:affiliation https://www.grid.ac/institutes/grid.163577.1
    51 schema:familyName Okumura
    52 schema:givenName Tomotaka
    53 rdf:type schema:Person
    54 N9f1c5af415d648e2a6120cc57f7e6192 rdf:first Nced036d7bf6b4e9aae3fa3b4ead33f0f
    55 rdf:rest Nbea458de664e4227b9689e11cc6777c6
    56 Nbea458de664e4227b9689e11cc6777c6 rdf:first sg:person.015055601425.87
    57 rdf:rest rdf:nil
    58 Nc59f79c365174ced93163ce9c5d065e5 rdf:first N7deed7335a5a4b59954d0e5126279bcc
    59 rdf:rest N9f1c5af415d648e2a6120cc57f7e6192
    60 Nced036d7bf6b4e9aae3fa3b4ead33f0f schema:affiliation https://www.grid.ac/institutes/grid.163577.1
    61 schema:familyName Sakamoto
    62 schema:givenName Hiroaki
    63 rdf:type schema:Person
    64 Ne3422818c89d4e15b9b334798cc54185 schema:name doi
    65 schema:value 10.1038/s41428-018-0160-5
    66 rdf:type schema:PropertyValue
    67 Nf3d4065cde0f4acf85fa07b7ae7e10e9 schema:name dimensions_id
    68 schema:value pub.1110706147
    69 rdf:type schema:PropertyValue
    70 Nf9669415601747a7b84e1fe7ba96b084 schema:volumeNumber 51
    71 rdf:type schema:PublicationVolume
    72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Engineering
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Materials Engineering
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1043822 schema:issn 0032-3896
    79 1349-0540
    80 schema:name Polymer Journal
    81 rdf:type schema:Periodical
    82 sg:person.010665325731.55 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
    83 schema:familyName Asai
    84 schema:givenName Hanako
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665325731.55
    86 rdf:type schema:Person
    87 sg:person.015055601425.87 schema:affiliation https://www.grid.ac/institutes/grid.163577.1
    88 schema:familyName Nakane
    89 schema:givenName Koji
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015055601425.87
    91 rdf:type schema:Person
    92 sg:pub.10.1007/s12541-014-0340-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028577627
    93 https://doi.org/10.1007/s12541-014-0340-y
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1002/pi.4562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053332067
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.polymer.2015.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044522304
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/j.snb.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020889070
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/j.snb.2013.12.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011715707
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.snb.2015.02.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025785778
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/s0379-6779(01)00576-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012606001
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1021/jp301501c schema:sameAs https://app.dimensions.ai/details/publication/pub.1056088294
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1039/c3ta11726j schema:sameAs https://app.dimensions.ai/details/publication/pub.1038714552
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1039/c8cc01670d schema:sameAs https://app.dimensions.ai/details/publication/pub.1101775489
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1039/c8ra02714e schema:sameAs https://app.dimensions.ai/details/publication/pub.1103989803
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1587/transele.e98.c.411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068088969
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.2115/fiberst.2017-0019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085963401
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.4028/www.scientific.net/amr.1105.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031419209
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.163577.1 schema:alternateName University of Fukui
    122 schema:name Frontier Fiber Technology and Science Course, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, 910-8507, Fukui, Japan
    123 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...