Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-11-07

AUTHORS

Gang Huang, Jiuhui Han, Chuchu Yang, Ziqian Wang, Takeshi Fujita, Akihiko Hirata, Mingwei Chen

ABSTRACT

An aprotic lithium–oxygen battery with an ultrahigh theoretical energy density has attracted significant attention as the next-generation electrochemical energy device demanded by all-electric vehicles and other high-energy devices. Extensive effort has recently been devoted to improving the performances of cathodes, anodes, and electrolytes. However, as an integrated system, the overall battery properties are not determined by the individual components but by the synergy of all components. Despite important progress in the development of cathodes, anodes, and electrolytes, the system-level design and assembly of lithium–oxygen batteries have not benefited from these recent advances. Here, we report a graphene-based quasi-solid-state lithium–oxygen battery consisting of a rationally designed 3D porous graphene cathode, redox mediator-modified gel polymer electrolyte, and porous graphene/Li anode. This integrated prototype battery simultaneously addresses the major challenges of lithium–oxygen batteries and achieves stable cycling at a large capacity, low charge overpotential and high rate in both coin-type and large-scale pouch-type batteries. For the first time, these lithium–oxygen batteries as a whole device deliver gravimetric and volumetric energy densities higher than those of a commercial Li-ion polymer battery. This study represents important progress toward the practical implementation of full-performance lithium–oxygen batteries. More... »

PAGES

1037-1045

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41427-018-0095-5

DOI

http://dx.doi.org/10.1038/s41427-018-0095-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1108057704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Gang", 
        "id": "sg:person.07436715240.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436715240.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "Jiuhui", 
        "id": "sg:person.011757432435.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757432435.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Chuchu", 
        "id": "sg:person.01223725005.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223725005.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Ziqian", 
        "id": "sg:person.01056051043.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056051043.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fujita", 
        "givenName": "Takeshi", 
        "id": "sg:person.01260575477.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260575477.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
          "id": "http://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirata", 
        "givenName": "Akihiko", 
        "id": "sg:person.01054462015.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CREST, JST, 4-1-8 Honcho Kawaguchi Saitama, 332-0012, Kawaguchi, Japan", 
          "id": "http://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan", 
            "Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA", 
            "CREST, JST, 4-1-8 Honcho Kawaguchi Saitama, 332-0012, Kawaguchi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Mingwei", 
        "id": "sg:person.01111213505.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ncomms8892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037174019", 
          "https://doi.org/10.1038/ncomms8892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013924266", 
          "https://doi.org/10.1038/ncomms9058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013223530", 
          "https://doi.org/10.1038/nchem.1646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004984348", 
          "https://doi.org/10.1038/nnano.2016.32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms15607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085882640", 
          "https://doi.org/10.1038/ncomms15607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2017.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129417", 
          "https://doi.org/10.1038/nnano.2017.16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nenergy.2017.118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090931136", 
          "https://doi.org/10.1038/nenergy.2017.118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040320141", 
          "https://doi.org/10.1038/ncomms3383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029037852", 
          "https://doi.org/10.1038/nmat3191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nenergy.2016.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017811962", 
          "https://doi.org/10.1038/nenergy.2016.128"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11-07", 
    "datePublishedReg": "2018-11-07", 
    "description": "An aprotic lithium\u2013oxygen battery with an ultrahigh theoretical energy density has attracted significant attention as the next-generation electrochemical energy device demanded by all-electric vehicles and other high-energy devices. Extensive effort has recently been devoted to improving the performances of cathodes, anodes, and electrolytes. However, as an integrated system, the overall battery properties are not determined by the individual components but by the synergy of all components. Despite important progress in the development of cathodes, anodes, and electrolytes, the system-level design and assembly of lithium\u2013oxygen batteries have not benefited from these recent advances. Here, we report a graphene-based quasi-solid-state lithium\u2013oxygen battery consisting of a rationally designed 3D porous graphene cathode, redox mediator-modified gel polymer electrolyte, and porous graphene/Li anode. This integrated prototype battery simultaneously addresses the major challenges of lithium\u2013oxygen batteries and achieves stable cycling at a large capacity, low charge overpotential and high rate in both coin-type and large-scale pouch-type batteries. For the first time, these lithium\u2013oxygen batteries as a whole device deliver gravimetric and volumetric energy densities higher than those of a commercial Li-ion polymer battery. This study represents important progress toward the practical implementation of full-performance lithium\u2013oxygen batteries.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41427-018-0095-5", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1053485", 
        "issn": [
          "1884-4049", 
          "1884-4057"
        ], 
        "name": "NPG Asia Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "keywords": [
      "lithium-oxygen batteries", 
      "State Lithium\u2010Oxygen Batteries", 
      "aprotic lithium-oxygen batteries", 
      "ultrahigh theoretical energy density", 
      "gel polymer electrolyte", 
      "electrochemical energy devices", 
      "Li-ion polymer batteries", 
      "theoretical energy density", 
      "performance of cathodes", 
      "development of cathodes", 
      "long cycling lifetime", 
      "polymer electrolytes", 
      "pouch-type battery", 
      "stable cycling", 
      "Li anode", 
      "polymer batteries", 
      "graphene cathode", 
      "battery properties", 
      "prototype battery", 
      "volumetric energy", 
      "high-energy devices", 
      "high energy efficiency", 
      "electrolyte", 
      "cathode", 
      "anode", 
      "energy devices", 
      "electric vehicles", 
      "cycling lifetime", 
      "system-level design", 
      "batteries", 
      "energy density", 
      "whole device", 
      "low charge", 
      "energy efficiency", 
      "integrated system", 
      "large capacity", 
      "important progress", 
      "significant attention", 
      "devices", 
      "practical implementation", 
      "extensive efforts", 
      "recent advances", 
      "first time", 
      "individual components", 
      "major challenge", 
      "graphene", 
      "charge", 
      "assembly", 
      "vehicles", 
      "properties", 
      "cycling", 
      "efficiency", 
      "design", 
      "energy", 
      "performance", 
      "lifetime", 
      "density", 
      "components", 
      "progress", 
      "capacity", 
      "system", 
      "advances", 
      "synergy", 
      "challenges", 
      "implementation", 
      "time", 
      "rate", 
      "attention", 
      "development", 
      "study", 
      "efforts", 
      "high rate"
    ], 
    "name": "Graphene-based quasi-solid-state lithium\u2013oxygen batteries with high energy efficiency and a long cycling lifetime", 
    "pagination": "1037-1045", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1108057704"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41427-018-0095-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41427-018-0095-5", 
      "https://app.dimensions.ai/details/publication/pub.1108057704"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41427-018-0095-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41427-018-0095-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41427-018-0095-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41427-018-0095-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41427-018-0095-5'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      108 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41427-018-0095-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author N88f60da63d214552b8c1f00b79188d77
6 schema:citation sg:pub.10.1038/nchem.1646
7 sg:pub.10.1038/ncomms15607
8 sg:pub.10.1038/ncomms3383
9 sg:pub.10.1038/ncomms8892
10 sg:pub.10.1038/ncomms9058
11 sg:pub.10.1038/nenergy.2016.128
12 sg:pub.10.1038/nenergy.2017.118
13 sg:pub.10.1038/nmat3191
14 sg:pub.10.1038/nnano.2016.32
15 sg:pub.10.1038/nnano.2017.16
16 schema:datePublished 2018-11-07
17 schema:datePublishedReg 2018-11-07
18 schema:description An aprotic lithium–oxygen battery with an ultrahigh theoretical energy density has attracted significant attention as the next-generation electrochemical energy device demanded by all-electric vehicles and other high-energy devices. Extensive effort has recently been devoted to improving the performances of cathodes, anodes, and electrolytes. However, as an integrated system, the overall battery properties are not determined by the individual components but by the synergy of all components. Despite important progress in the development of cathodes, anodes, and electrolytes, the system-level design and assembly of lithium–oxygen batteries have not benefited from these recent advances. Here, we report a graphene-based quasi-solid-state lithium–oxygen battery consisting of a rationally designed 3D porous graphene cathode, redox mediator-modified gel polymer electrolyte, and porous graphene/Li anode. This integrated prototype battery simultaneously addresses the major challenges of lithium–oxygen batteries and achieves stable cycling at a large capacity, low charge overpotential and high rate in both coin-type and large-scale pouch-type batteries. For the first time, these lithium–oxygen batteries as a whole device deliver gravimetric and volumetric energy densities higher than those of a commercial Li-ion polymer battery. This study represents important progress toward the practical implementation of full-performance lithium–oxygen batteries.
19 schema:genre article
20 schema:isAccessibleForFree true
21 schema:isPartOf N82619e3012964246b8bcc93a57ed80c4
22 Nd5af7a0b92324a18bb55e8f0442d9cd2
23 sg:journal.1053485
24 schema:keywords Li anode
25 Li-ion polymer batteries
26 State Lithium‐Oxygen Batteries
27 advances
28 anode
29 aprotic lithium-oxygen batteries
30 assembly
31 attention
32 batteries
33 battery properties
34 capacity
35 cathode
36 challenges
37 charge
38 components
39 cycling
40 cycling lifetime
41 density
42 design
43 development
44 development of cathodes
45 devices
46 efficiency
47 efforts
48 electric vehicles
49 electrochemical energy devices
50 electrolyte
51 energy
52 energy density
53 energy devices
54 energy efficiency
55 extensive efforts
56 first time
57 gel polymer electrolyte
58 graphene
59 graphene cathode
60 high energy efficiency
61 high rate
62 high-energy devices
63 implementation
64 important progress
65 individual components
66 integrated system
67 large capacity
68 lifetime
69 lithium-oxygen batteries
70 long cycling lifetime
71 low charge
72 major challenge
73 performance
74 performance of cathodes
75 polymer batteries
76 polymer electrolytes
77 pouch-type battery
78 practical implementation
79 progress
80 properties
81 prototype battery
82 rate
83 recent advances
84 significant attention
85 stable cycling
86 study
87 synergy
88 system
89 system-level design
90 theoretical energy density
91 time
92 ultrahigh theoretical energy density
93 vehicles
94 volumetric energy
95 whole device
96 schema:name Graphene-based quasi-solid-state lithium–oxygen batteries with high energy efficiency and a long cycling lifetime
97 schema:pagination 1037-1045
98 schema:productId N6c35f50bfae644a58050e6e9752b54cd
99 N8a5d3f0708204558a85d84e3578f0a06
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108057704
101 https://doi.org/10.1038/s41427-018-0095-5
102 schema:sdDatePublished 2022-09-02T16:03
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher Neadb9265cb77462084467b3cad9c733a
105 schema:url https://doi.org/10.1038/s41427-018-0095-5
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0a890c043ebb456a9b1271c537f9c44f rdf:first sg:person.01056051043.81
110 rdf:rest N2253935fc1f445808d29cad4cc2be7fe
111 N0fcdd52ba58340ddbae4976d56728edb rdf:first sg:person.011757432435.33
112 rdf:rest Nd2cc1c5d8e3f46999c6190dbaefd7ecd
113 N2253935fc1f445808d29cad4cc2be7fe rdf:first sg:person.01260575477.34
114 rdf:rest Nbf18e63df1bb48f385754f5b4065939e
115 N23fb18e278be479d814e9b0fb209cc4a rdf:first sg:person.01111213505.34
116 rdf:rest rdf:nil
117 N6c35f50bfae644a58050e6e9752b54cd schema:name dimensions_id
118 schema:value pub.1108057704
119 rdf:type schema:PropertyValue
120 N82619e3012964246b8bcc93a57ed80c4 schema:volumeNumber 10
121 rdf:type schema:PublicationVolume
122 N88f60da63d214552b8c1f00b79188d77 rdf:first sg:person.07436715240.94
123 rdf:rest N0fcdd52ba58340ddbae4976d56728edb
124 N8a5d3f0708204558a85d84e3578f0a06 schema:name doi
125 schema:value 10.1038/s41427-018-0095-5
126 rdf:type schema:PropertyValue
127 Nbf18e63df1bb48f385754f5b4065939e rdf:first sg:person.01054462015.95
128 rdf:rest N23fb18e278be479d814e9b0fb209cc4a
129 Nd2cc1c5d8e3f46999c6190dbaefd7ecd rdf:first sg:person.01223725005.76
130 rdf:rest N0a890c043ebb456a9b1271c537f9c44f
131 Nd5af7a0b92324a18bb55e8f0442d9cd2 schema:issueNumber 11
132 rdf:type schema:PublicationIssue
133 Neadb9265cb77462084467b3cad9c733a schema:name Springer Nature - SN SciGraph project
134 rdf:type schema:Organization
135 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
136 schema:name Chemical Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
139 schema:name Physical Chemistry (incl. Structural)
140 rdf:type schema:DefinedTerm
141 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
142 schema:name Engineering
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
145 schema:name Materials Engineering
146 rdf:type schema:DefinedTerm
147 sg:journal.1053485 schema:issn 1884-4049
148 1884-4057
149 schema:name NPG Asia Materials
150 schema:publisher Springer Nature
151 rdf:type schema:Periodical
152 sg:person.01054462015.95 schema:affiliation grid-institutes:grid.69566.3a
153 schema:familyName Hirata
154 schema:givenName Akihiko
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01054462015.95
156 rdf:type schema:Person
157 sg:person.01056051043.81 schema:affiliation grid-institutes:grid.21107.35
158 schema:familyName Wang
159 schema:givenName Ziqian
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01056051043.81
161 rdf:type schema:Person
162 sg:person.01111213505.34 schema:affiliation grid-institutes:grid.419082.6
163 schema:familyName Chen
164 schema:givenName Mingwei
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111213505.34
166 rdf:type schema:Person
167 sg:person.011757432435.33 schema:affiliation grid-institutes:grid.69566.3a
168 schema:familyName Han
169 schema:givenName Jiuhui
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011757432435.33
171 rdf:type schema:Person
172 sg:person.01223725005.76 schema:affiliation grid-institutes:grid.69566.3a
173 schema:familyName Yang
174 schema:givenName Chuchu
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223725005.76
176 rdf:type schema:Person
177 sg:person.01260575477.34 schema:affiliation grid-institutes:grid.69566.3a
178 schema:familyName Fujita
179 schema:givenName Takeshi
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260575477.34
181 rdf:type schema:Person
182 sg:person.07436715240.94 schema:affiliation grid-institutes:grid.69566.3a
183 schema:familyName Huang
184 schema:givenName Gang
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07436715240.94
186 rdf:type schema:Person
187 sg:pub.10.1038/nchem.1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013223530
188 https://doi.org/10.1038/nchem.1646
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ncomms15607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085882640
191 https://doi.org/10.1038/ncomms15607
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/ncomms3383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040320141
194 https://doi.org/10.1038/ncomms3383
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/ncomms8892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037174019
197 https://doi.org/10.1038/ncomms8892
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/ncomms9058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013924266
200 https://doi.org/10.1038/ncomms9058
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nenergy.2016.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017811962
203 https://doi.org/10.1038/nenergy.2016.128
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nenergy.2017.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090931136
206 https://doi.org/10.1038/nenergy.2017.118
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nmat3191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029037852
209 https://doi.org/10.1038/nmat3191
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/nnano.2016.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004984348
212 https://doi.org/10.1038/nnano.2016.32
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/nnano.2017.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129417
215 https://doi.org/10.1038/nnano.2017.16
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.21107.35 schema:alternateName Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA
218 schema:name Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA
219 rdf:type schema:Organization
220 grid-institutes:grid.419082.6 schema:alternateName CREST, JST, 4-1-8 Honcho Kawaguchi Saitama, 332-0012, Kawaguchi, Japan
221 schema:name CREST, JST, 4-1-8 Honcho Kawaguchi Saitama, 332-0012, Kawaguchi, Japan
222 Department of Materials Science and Engineering, Johns Hopkins University, 21214, Baltimore, MD, USA
223 WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
224 rdf:type schema:Organization
225 grid-institutes:grid.69566.3a schema:alternateName WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
226 schema:name WPI Advanced Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...