Landscape of the genome and host cell response of Mycobacterium shigaense reveals pathogenic features View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Haiqin Jiang, Jiya Sun, Yanqing Chen, Zhiming Chen, Le Wang, Wei Gao, Ying Shi, Wenyue Zhang, Youming Mei, Santosh Chokkakula, Varalakshmi Vissa, Taijiao Jiang, Aiping Wu, Hongsheng Wang

ABSTRACT

A systems approach was used to explore the genome and transcriptome of Mycobacterium shigaense, a new opportunistic pathogen isolated from a patient with a skin infection, and the host response transcriptome was assessed using a macrophage infection model. The M. shigaense genome comprises 5,207,883 bp, with 67.2% G+C content and 5098 predicted coding genes. Evolutionarily, the bacterium belongs to a cluster in the phylogenetic tree along with three target opportunistic pathogenic strains, namely, M. avium, M. triplex and M. simiae. Potential virulence genes are indeed expressed by M. shigaense under culture conditions. Phenotypically, M. shigaense had similar infection and replication capacities in a macrophage model as the opportunistic species compared to M. tuberculosis. M. shigaense activated NF-κB, TNF, cytokines and chemokines in the host innate immune-related signaling pathways and elicited an early response shared with pathogenic bacilli except M. tuberculosis. M. shigaense upregulated specific host response genes such as TLR7, CCL4 and CXCL5. We performed an integrated and comparative analysis of M. shigaense. Multigroup comparison indicated certain differences with typical pathogenic bacilli in terms of gene features and the macrophage response. More... »

PAGES

112

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41426-018-0116-z

DOI

http://dx.doi.org/10.1038/s41426-018-0116-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105046694

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29934568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1108", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Host-Pathogen Interactions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Macrophages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Viability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mycobacterium Infections", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phylogeny", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal Transduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Virulence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Virulence Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Haiqin", 
        "id": "sg:person.01076147401.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076147401.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suzhou Institute of Systems Medicine", 
          "id": "https://www.grid.ac/institutes/grid.494590.5", 
          "name": [
            "Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, 215021, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Jiya", 
        "id": "sg:person.01240115211.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240115211.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yanqing", 
        "id": "sg:person.012424400473.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424400473.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Zhiming", 
        "id": "sg:person.07504611673.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504611673.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Le", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Ying", 
        "id": "sg:person.010302172273.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010302172273.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wenyue", 
        "id": "sg:person.01223075051.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223075051.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mei", 
        "givenName": "Youming", 
        "id": "sg:person.014106047464.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014106047464.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chokkakula", 
        "givenName": "Santosh", 
        "id": "sg:person.015621147045.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015621147045.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vissa", 
        "givenName": "Varalakshmi", 
        "id": "sg:person.01151112425.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151112425.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suzhou Institute of Systems Medicine", 
          "id": "https://www.grid.ac/institutes/grid.494590.5", 
          "name": [
            "Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, 215021, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Taijiao", 
        "id": "sg:person.0643103433.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643103433.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Suzhou Institute of Systems Medicine", 
          "id": "https://www.grid.ac/institutes/grid.494590.5", 
          "name": [
            "Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, 215021, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Aiping", 
        "id": "sg:person.0621441006.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621441006.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chinese Academy of Medical Sciences Dermatology Hospital", 
          "id": "https://www.grid.ac/institutes/grid.477246.4", 
          "name": [
            "Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China", 
            "Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hongsheng", 
        "id": "sg:person.01123561556.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123561556.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12088-009-0006-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000015640", 
          "https://doi.org/10.1007/s12088-009-0006-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4049/jimmunol.1102181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000385137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1224503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000505228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkf436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003376662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/981984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004774172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005140994", 
          "https://doi.org/10.1038/nmeth.3317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diagmicrobio.2011.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006284844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007259041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007698165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-59745-251-9_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009840211", 
          "https://doi.org/10.1007/978-1-59745-251-9_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010031659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1438-4221(00)80083-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010484720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011521639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.2658311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011627995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15216540601034856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011709897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.075069.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011797649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013270235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.270.25.14891", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016142544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/2047-217x-1-18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016521225", 
          "https://doi.org/10.1186/2047-217x-1-18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1164/rccm.200604-571st", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017257548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/ir:28:2:109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017373167", 
          "https://doi.org/10.1385/ir:28:2:109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2011.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018308488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci72030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018405624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2016.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018665143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471250953.bi1105s31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018775132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.det.2015.03.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019579718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2012-01-407395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020189902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025913915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-13-238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028668057", 
          "https://doi.org/10.1186/1471-2105-13-238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030736062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030783427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2672.2009.04161.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031365499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033360952", 
          "https://doi.org/10.1038/nbt.2280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1346-8138.2011.01355.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035992709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tube.2008.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036743404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037970477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3201/eid1905.121022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038918124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040091254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040558615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep15214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041858763", 
          "https://doi.org/10.1038/srep15214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.5.0955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041894290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043301791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/916521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043787189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2169/internalmedicine.55.6996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048184950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0004548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050582092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/fmb.15.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052422064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052496358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/emboj.2008.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053220653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077159283", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A systems approach was used to explore the genome and transcriptome of Mycobacterium shigaense, a new opportunistic pathogen isolated from a patient with a skin infection, and the host response transcriptome was assessed using a macrophage infection model. The M. shigaense genome comprises 5,207,883\u2009bp, with 67.2% G+C content and 5098 predicted coding genes. Evolutionarily, the bacterium belongs to a cluster in the phylogenetic tree along with three target opportunistic pathogenic strains, namely, M. avium, M. triplex and M. simiae. Potential virulence genes are indeed expressed by M. shigaense under culture conditions. Phenotypically, M. shigaense had similar infection and replication capacities in a macrophage model as the opportunistic species compared to M. tuberculosis. M. shigaense activated NF-\u03baB, TNF, cytokines and chemokines in the host innate immune-related signaling pathways and elicited an early response shared with pathogenic bacilli except M. tuberculosis. M. shigaense upregulated specific host response genes such as TLR7, CCL4 and CXCL5. We performed an integrated and comparative analysis of M. shigaense. Multigroup comparison indicated certain differences with typical pathogenic bacilli in terms of gene features and the macrophage response.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41426-018-0116-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1047596", 
        "issn": [
          "2222-1751"
        ], 
        "name": "Emerging Microbes & Infections", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "Landscape of the genome and host cell response of Mycobacterium shigaense reveals pathogenic features", 
    "pagination": "112", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b2262c51e771725afd68c8296619c48ce69933ca9db909f4056210c1cba1bac4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29934568"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101594885"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41426-018-0116-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105046694"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41426-018-0116-z", 
      "https://app.dimensions.ai/details/publication/pub.1105046694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60357_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41426-018-0116-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41426-018-0116-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41426-018-0116-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41426-018-0116-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41426-018-0116-z'


 

This table displays all metadata directly associated to this object as RDF triples.

394 TRIPLES      21 PREDICATES      98 URIs      40 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41426-018-0116-z schema:about N130ec5cdb683479da91ceb3cdebeec6a
2 N1f1de9ac589145e0b1be27b97fec1c25
3 N2489d76d02494b5fa31767f3ce991f90
4 N26398a403c914a76824bded95ab0aa85
5 N611de6b985ac409fb197868ab4086c7c
6 N6d7862cf2a9b433783be748fec1bd943
7 N81b1a918387d4bafb2552f067a888ba4
8 N99e373e321a4467ca85326f25d3f8744
9 N9fa50679a2bc4c19a945baad5da02e50
10 Nb283a43ee9824edba3ca3588c381ed89
11 Nb5848d3b203f43b3b50204c5c2de3eb6
12 Nc2690afff87a49d0b8d5a1fed242715b
13 Nc8d1a281d87a4429845f320381563405
14 Ncc57744a4da84268bc31b449e6dda6e6
15 Nce83a1a462ab4f199361e61673899505
16 Nd38ea9a895d74c35b0e7b7f69da7e85a
17 Ne3a81c5bf5eb44b9a17557785d544bc0
18 Ne7bcbee4eb714084b44b5919b636cb06
19 Nff64be3768b4470395787de9fc328d52
20 anzsrc-for:11
21 anzsrc-for:1108
22 schema:author N68c0b5631ada4efdb9abbb74d6550018
23 schema:citation sg:pub.10.1007/978-1-59745-251-9_6
24 sg:pub.10.1007/s12088-009-0006-0
25 sg:pub.10.1038/nbt.2280
26 sg:pub.10.1038/nmeth.3317
27 sg:pub.10.1038/srep15214
28 sg:pub.10.1186/1471-2105-13-238
29 sg:pub.10.1186/2047-217x-1-18
30 sg:pub.10.1385/ir:28:2:109
31 https://app.dimensions.ai/details/publication/pub.1077159283
32 https://doi.org/10.1002/0471250953.bi1105s31
33 https://doi.org/10.1016/j.det.2015.03.017
34 https://doi.org/10.1016/j.diagmicrobio.2011.07.003
35 https://doi.org/10.1016/j.tube.2008.05.002
36 https://doi.org/10.1016/j.tube.2011.02.006
37 https://doi.org/10.1016/j.tube.2016.03.008
38 https://doi.org/10.1016/s1438-4221(00)80083-1
39 https://doi.org/10.1038/emboj.2008.31
40 https://doi.org/10.1074/jbc.270.25.14891
41 https://doi.org/10.1080/15216540601034856
42 https://doi.org/10.1093/bioinformatics/bth397
43 https://doi.org/10.1093/bioinformatics/btm009
44 https://doi.org/10.1093/bioinformatics/btn578
45 https://doi.org/10.1093/bioinformatics/bts515
46 https://doi.org/10.1093/bioinformatics/btu170
47 https://doi.org/10.1093/molbev/msm111
48 https://doi.org/10.1093/nar/25.5.0955
49 https://doi.org/10.1093/nar/gkf436
50 https://doi.org/10.1093/nar/gki008
51 https://doi.org/10.1093/nar/gkm160
52 https://doi.org/10.1093/nar/gkm360
53 https://doi.org/10.1093/nar/gkr485
54 https://doi.org/10.1093/nar/gkt1253
55 https://doi.org/10.1093/nar/gkt444
56 https://doi.org/10.1093/nar/gkv401
57 https://doi.org/10.1101/gr.075069.107
58 https://doi.org/10.1101/gr.1224503
59 https://doi.org/10.1111/j.1346-8138.2011.01355.x
60 https://doi.org/10.1111/j.1365-2672.2009.04161.x
61 https://doi.org/10.1126/science.287.5461.2196
62 https://doi.org/10.1155/2013/981984
63 https://doi.org/10.1155/2014/916521
64 https://doi.org/10.1164/rccm.200604-571st
65 https://doi.org/10.1172/jci72030
66 https://doi.org/10.1182/blood-2012-01-407395
67 https://doi.org/10.1261/rna.2658311
68 https://doi.org/10.1371/journal.pone.0004548
69 https://doi.org/10.2169/internalmedicine.55.6996
70 https://doi.org/10.2217/fmb.15.64
71 https://doi.org/10.3201/eid1905.121022
72 https://doi.org/10.4049/jimmunol.1102181
73 schema:datePublished 2018-12
74 schema:datePublishedReg 2018-12-01
75 schema:description A systems approach was used to explore the genome and transcriptome of Mycobacterium shigaense, a new opportunistic pathogen isolated from a patient with a skin infection, and the host response transcriptome was assessed using a macrophage infection model. The M. shigaense genome comprises 5,207,883 bp, with 67.2% G+C content and 5098 predicted coding genes. Evolutionarily, the bacterium belongs to a cluster in the phylogenetic tree along with three target opportunistic pathogenic strains, namely, M. avium, M. triplex and M. simiae. Potential virulence genes are indeed expressed by M. shigaense under culture conditions. Phenotypically, M. shigaense had similar infection and replication capacities in a macrophage model as the opportunistic species compared to M. tuberculosis. M. shigaense activated NF-κB, TNF, cytokines and chemokines in the host innate immune-related signaling pathways and elicited an early response shared with pathogenic bacilli except M. tuberculosis. M. shigaense upregulated specific host response genes such as TLR7, CCL4 and CXCL5. We performed an integrated and comparative analysis of M. shigaense. Multigroup comparison indicated certain differences with typical pathogenic bacilli in terms of gene features and the macrophage response.
76 schema:genre research_article
77 schema:inLanguage en
78 schema:isAccessibleForFree true
79 schema:isPartOf Na86e3475028b457081531e891fb2cbb2
80 Nd1d36bb384e04cbd9a25365df08e4151
81 sg:journal.1047596
82 schema:name Landscape of the genome and host cell response of Mycobacterium shigaense reveals pathogenic features
83 schema:pagination 112
84 schema:productId N08661ced514b44168cef6b5d6a4cda25
85 N32747ed853964ced8d937eaecfa0e84a
86 Na009cab702fa4baabdfe7258c1336ae9
87 Nb787f0b877444105ad2abe94a3379ad1
88 Nd62b6b03f1ea4dc599e9555d1049d0f1
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105046694
90 https://doi.org/10.1038/s41426-018-0116-z
91 schema:sdDatePublished 2019-04-11T11:03
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher N370dc548545e4a7fa56404ab0b12e257
94 schema:url https://www.nature.com/articles/s41426-018-0116-z
95 sgo:license sg:explorer/license/
96 sgo:sdDataset articles
97 rdf:type schema:ScholarlyArticle
98 N071bc298023248dc8fdb3f8bbe7e1d8b rdf:first sg:person.014106047464.51
99 rdf:rest Ncfe6c8abe0d54b37ad8d81de0eed6257
100 N08661ced514b44168cef6b5d6a4cda25 schema:name readcube_id
101 schema:value b2262c51e771725afd68c8296619c48ce69933ca9db909f4056210c1cba1bac4
102 rdf:type schema:PropertyValue
103 N09cce3894d1c4f78b3697ba2b9746d54 rdf:first sg:person.01151112425.69
104 rdf:rest Nd083c6cda7bf4fe59393310c042bd417
105 N130ec5cdb683479da91ceb3cdebeec6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Microbial Viability
107 rdf:type schema:DefinedTerm
108 N1bff460e09124c63acf4f766c54b5939 rdf:first sg:person.01240115211.22
109 rdf:rest Ne53aaa3dc3e344b0b09ed7d205b7738a
110 N1f1de9ac589145e0b1be27b97fec1c25 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Phylogeny
112 rdf:type schema:DefinedTerm
113 N2029e4d937bc4417a882ea93cd680510 rdf:first sg:person.01223075051.26
114 rdf:rest N071bc298023248dc8fdb3f8bbe7e1d8b
115 N2489d76d02494b5fa31767f3ce991f90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Computational Biology
117 rdf:type schema:DefinedTerm
118 N24b190ef4dc64211be348e668e3c00cc rdf:first sg:person.0621441006.23
119 rdf:rest N26510705aaf04dc6bbeaed780f1a985b
120 N26398a403c914a76824bded95ab0aa85 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Macrophages
122 rdf:type schema:DefinedTerm
123 N26510705aaf04dc6bbeaed780f1a985b rdf:first sg:person.01123561556.65
124 rdf:rest rdf:nil
125 N32747ed853964ced8d937eaecfa0e84a schema:name nlm_unique_id
126 schema:value 101594885
127 rdf:type schema:PropertyValue
128 N370dc548545e4a7fa56404ab0b12e257 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N611de6b985ac409fb197868ab4086c7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Gene Expression Profiling
132 rdf:type schema:DefinedTerm
133 N68c0b5631ada4efdb9abbb74d6550018 rdf:first sg:person.01076147401.22
134 rdf:rest N1bff460e09124c63acf4f766c54b5939
135 N6d7862cf2a9b433783be748fec1bd943 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Drug Resistance, Bacterial
137 rdf:type schema:DefinedTerm
138 N6dd634cc7f184447bec30a0bc36d9bb6 rdf:first sg:person.07504611673.51
139 rdf:rest Nbce4134c203345e0939a14afb699f990
140 N81b1a918387d4bafb2552f067a888ba4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Genome, Bacterial
142 rdf:type schema:DefinedTerm
143 N93e3b0e2a0284510bfc66a7f71039276 rdf:first N9bd0f2bfec074db29037acf007603469
144 rdf:rest Nb721e5dc419f4dbaab90f7512ca2bc41
145 N99e373e321a4467ca85326f25d3f8744 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Anti-Bacterial Agents
147 rdf:type schema:DefinedTerm
148 N9bd0f2bfec074db29037acf007603469 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
149 schema:familyName Gao
150 schema:givenName Wei
151 rdf:type schema:Person
152 N9fa50679a2bc4c19a945baad5da02e50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Host-Pathogen Interactions
154 rdf:type schema:DefinedTerm
155 Na009cab702fa4baabdfe7258c1336ae9 schema:name pubmed_id
156 schema:value 29934568
157 rdf:type schema:PropertyValue
158 Na86e3475028b457081531e891fb2cbb2 schema:volumeNumber 7
159 rdf:type schema:PublicationVolume
160 Nb283a43ee9824edba3ca3588c381ed89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Mycobacterium Infections
162 rdf:type schema:DefinedTerm
163 Nb5848d3b203f43b3b50204c5c2de3eb6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Virulence
165 rdf:type schema:DefinedTerm
166 Nb721e5dc419f4dbaab90f7512ca2bc41 rdf:first sg:person.010302172273.30
167 rdf:rest N2029e4d937bc4417a882ea93cd680510
168 Nb787f0b877444105ad2abe94a3379ad1 schema:name dimensions_id
169 schema:value pub.1105046694
170 rdf:type schema:PropertyValue
171 Nbce4134c203345e0939a14afb699f990 rdf:first Ncb3697cc4e184d098df86c1b7720e9eb
172 rdf:rest N93e3b0e2a0284510bfc66a7f71039276
173 Nc2690afff87a49d0b8d5a1fed242715b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Virulence Factors
175 rdf:type schema:DefinedTerm
176 Nc8d1a281d87a4429845f320381563405 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Genomics
178 rdf:type schema:DefinedTerm
179 Ncb3697cc4e184d098df86c1b7720e9eb schema:affiliation https://www.grid.ac/institutes/grid.477246.4
180 schema:familyName Wang
181 schema:givenName Le
182 rdf:type schema:Person
183 Ncc57744a4da84268bc31b449e6dda6e6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Gene Expression Regulation
185 rdf:type schema:DefinedTerm
186 Nce83a1a462ab4f199361e61673899505 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Mycobacterium
188 rdf:type schema:DefinedTerm
189 Ncfe6c8abe0d54b37ad8d81de0eed6257 rdf:first sg:person.015621147045.93
190 rdf:rest N09cce3894d1c4f78b3697ba2b9746d54
191 Nd083c6cda7bf4fe59393310c042bd417 rdf:first sg:person.0643103433.44
192 rdf:rest N24b190ef4dc64211be348e668e3c00cc
193 Nd1d36bb384e04cbd9a25365df08e4151 schema:issueNumber 1
194 rdf:type schema:PublicationIssue
195 Nd38ea9a895d74c35b0e7b7f69da7e85a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Gene Expression Regulation, Bacterial
197 rdf:type schema:DefinedTerm
198 Nd62b6b03f1ea4dc599e9555d1049d0f1 schema:name doi
199 schema:value 10.1038/s41426-018-0116-z
200 rdf:type schema:PropertyValue
201 Ne3a81c5bf5eb44b9a17557785d544bc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
202 schema:name Signal Transduction
203 rdf:type schema:DefinedTerm
204 Ne53aaa3dc3e344b0b09ed7d205b7738a rdf:first sg:person.012424400473.15
205 rdf:rest N6dd634cc7f184447bec30a0bc36d9bb6
206 Ne7bcbee4eb714084b44b5919b636cb06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Molecular Sequence Annotation
208 rdf:type schema:DefinedTerm
209 Nff64be3768b4470395787de9fc328d52 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Humans
211 rdf:type schema:DefinedTerm
212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
213 schema:name Medical and Health Sciences
214 rdf:type schema:DefinedTerm
215 anzsrc-for:1108 schema:inDefinedTermSet anzsrc-for:
216 schema:name Medical Microbiology
217 rdf:type schema:DefinedTerm
218 sg:journal.1047596 schema:issn 2222-1751
219 schema:name Emerging Microbes & Infections
220 rdf:type schema:Periodical
221 sg:person.010302172273.30 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
222 schema:familyName Shi
223 schema:givenName Ying
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010302172273.30
225 rdf:type schema:Person
226 sg:person.01076147401.22 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
227 schema:familyName Jiang
228 schema:givenName Haiqin
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076147401.22
230 rdf:type schema:Person
231 sg:person.01123561556.65 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
232 schema:familyName Wang
233 schema:givenName Hongsheng
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01123561556.65
235 rdf:type schema:Person
236 sg:person.01151112425.69 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
237 schema:familyName Vissa
238 schema:givenName Varalakshmi
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151112425.69
240 rdf:type schema:Person
241 sg:person.01223075051.26 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
242 schema:familyName Zhang
243 schema:givenName Wenyue
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223075051.26
245 rdf:type schema:Person
246 sg:person.01240115211.22 schema:affiliation https://www.grid.ac/institutes/grid.494590.5
247 schema:familyName Sun
248 schema:givenName Jiya
249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01240115211.22
250 rdf:type schema:Person
251 sg:person.012424400473.15 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
252 schema:familyName Chen
253 schema:givenName Yanqing
254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012424400473.15
255 rdf:type schema:Person
256 sg:person.014106047464.51 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
257 schema:familyName Mei
258 schema:givenName Youming
259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014106047464.51
260 rdf:type schema:Person
261 sg:person.015621147045.93 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
262 schema:familyName Chokkakula
263 schema:givenName Santosh
264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015621147045.93
265 rdf:type schema:Person
266 sg:person.0621441006.23 schema:affiliation https://www.grid.ac/institutes/grid.494590.5
267 schema:familyName Wu
268 schema:givenName Aiping
269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621441006.23
270 rdf:type schema:Person
271 sg:person.0643103433.44 schema:affiliation https://www.grid.ac/institutes/grid.494590.5
272 schema:familyName Jiang
273 schema:givenName Taijiao
274 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643103433.44
275 rdf:type schema:Person
276 sg:person.07504611673.51 schema:affiliation https://www.grid.ac/institutes/grid.477246.4
277 schema:familyName Chen
278 schema:givenName Zhiming
279 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07504611673.51
280 rdf:type schema:Person
281 sg:pub.10.1007/978-1-59745-251-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009840211
282 https://doi.org/10.1007/978-1-59745-251-9_6
283 rdf:type schema:CreativeWork
284 sg:pub.10.1007/s12088-009-0006-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000015640
285 https://doi.org/10.1007/s12088-009-0006-0
286 rdf:type schema:CreativeWork
287 sg:pub.10.1038/nbt.2280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033360952
288 https://doi.org/10.1038/nbt.2280
289 rdf:type schema:CreativeWork
290 sg:pub.10.1038/nmeth.3317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005140994
291 https://doi.org/10.1038/nmeth.3317
292 rdf:type schema:CreativeWork
293 sg:pub.10.1038/srep15214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041858763
294 https://doi.org/10.1038/srep15214
295 rdf:type schema:CreativeWork
296 sg:pub.10.1186/1471-2105-13-238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028668057
297 https://doi.org/10.1186/1471-2105-13-238
298 rdf:type schema:CreativeWork
299 sg:pub.10.1186/2047-217x-1-18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016521225
300 https://doi.org/10.1186/2047-217x-1-18
301 rdf:type schema:CreativeWork
302 sg:pub.10.1385/ir:28:2:109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017373167
303 https://doi.org/10.1385/ir:28:2:109
304 rdf:type schema:CreativeWork
305 https://app.dimensions.ai/details/publication/pub.1077159283 schema:CreativeWork
306 https://doi.org/10.1002/0471250953.bi1105s31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018775132
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1016/j.det.2015.03.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019579718
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1016/j.diagmicrobio.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006284844
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1016/j.tube.2008.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036743404
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1016/j.tube.2011.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018308488
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1016/j.tube.2016.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018665143
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1016/s1438-4221(00)80083-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010484720
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1038/emboj.2008.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053220653
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1074/jbc.270.25.14891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016142544
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1080/15216540601034856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011709897
325 rdf:type schema:CreativeWork
326 https://doi.org/10.1093/bioinformatics/bth397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043301791
327 rdf:type schema:CreativeWork
328 https://doi.org/10.1093/bioinformatics/btm009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025913915
329 rdf:type schema:CreativeWork
330 https://doi.org/10.1093/bioinformatics/btn578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013270235
331 rdf:type schema:CreativeWork
332 https://doi.org/10.1093/bioinformatics/bts515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040091254
333 rdf:type schema:CreativeWork
334 https://doi.org/10.1093/bioinformatics/btu170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720804
335 rdf:type schema:CreativeWork
336 https://doi.org/10.1093/molbev/msm111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011521639
337 rdf:type schema:CreativeWork
338 https://doi.org/10.1093/nar/25.5.0955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041894290
339 rdf:type schema:CreativeWork
340 https://doi.org/10.1093/nar/gkf436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376662
341 rdf:type schema:CreativeWork
342 https://doi.org/10.1093/nar/gki008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052496358
343 rdf:type schema:CreativeWork
344 https://doi.org/10.1093/nar/gkm160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030736062
345 rdf:type schema:CreativeWork
346 https://doi.org/10.1093/nar/gkm360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037970477
347 rdf:type schema:CreativeWork
348 https://doi.org/10.1093/nar/gkr485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007259041
349 rdf:type schema:CreativeWork
350 https://doi.org/10.1093/nar/gkt1253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040558615
351 rdf:type schema:CreativeWork
352 https://doi.org/10.1093/nar/gkt444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007698165
353 rdf:type schema:CreativeWork
354 https://doi.org/10.1093/nar/gkv401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010031659
355 rdf:type schema:CreativeWork
356 https://doi.org/10.1101/gr.075069.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011797649
357 rdf:type schema:CreativeWork
358 https://doi.org/10.1101/gr.1224503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000505228
359 rdf:type schema:CreativeWork
360 https://doi.org/10.1111/j.1346-8138.2011.01355.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035992709
361 rdf:type schema:CreativeWork
362 https://doi.org/10.1111/j.1365-2672.2009.04161.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031365499
363 rdf:type schema:CreativeWork
364 https://doi.org/10.1126/science.287.5461.2196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030783427
365 rdf:type schema:CreativeWork
366 https://doi.org/10.1155/2013/981984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004774172
367 rdf:type schema:CreativeWork
368 https://doi.org/10.1155/2014/916521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043787189
369 rdf:type schema:CreativeWork
370 https://doi.org/10.1164/rccm.200604-571st schema:sameAs https://app.dimensions.ai/details/publication/pub.1017257548
371 rdf:type schema:CreativeWork
372 https://doi.org/10.1172/jci72030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018405624
373 rdf:type schema:CreativeWork
374 https://doi.org/10.1182/blood-2012-01-407395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020189902
375 rdf:type schema:CreativeWork
376 https://doi.org/10.1261/rna.2658311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011627995
377 rdf:type schema:CreativeWork
378 https://doi.org/10.1371/journal.pone.0004548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050582092
379 rdf:type schema:CreativeWork
380 https://doi.org/10.2169/internalmedicine.55.6996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048184950
381 rdf:type schema:CreativeWork
382 https://doi.org/10.2217/fmb.15.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052422064
383 rdf:type schema:CreativeWork
384 https://doi.org/10.3201/eid1905.121022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038918124
385 rdf:type schema:CreativeWork
386 https://doi.org/10.4049/jimmunol.1102181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000385137
387 rdf:type schema:CreativeWork
388 https://www.grid.ac/institutes/grid.477246.4 schema:alternateName Chinese Academy of Medical Sciences Dermatology Hospital
389 schema:name Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042, Nanjing, China
390 Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, 210042, Nanjing, China
391 rdf:type schema:Organization
392 https://www.grid.ac/institutes/grid.494590.5 schema:alternateName Suzhou Institute of Systems Medicine
393 schema:name Suzhou Institute of Systems Medicine, Center of Systems Medicine, Chinese Academy of Medical Sciences, 215021, Suzhou, China
394 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...