The whole transcriptome and proteome changes in the early stage of myocardial infarction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12

AUTHORS

Yanfei Li, Cuiping Wang, Tingting Li, Linlin Ma, Fangzhou Fan, Yueling Jin, Junwei Shen

ABSTRACT

As the most severe manifestation of coronary artery disease, myocardial infarction (MI) is a complex and multifactorial pathophysiologic process. However, the pathogenesis that underlies MI remains unclear. Here, we generated a MI mouse model by ligation of the proximal left anterior descending coronary artery. The transcriptome and proteome, at different time points after MI, were detected and analysed. Immune-related pathways, cell cycle-related pathways, and extracellular matrix remodelling-related pathways were significantly increased after MI. Not only innate immune cells but also adaptive immune cells participated in the early stage of MI. Proteins that functioned in blood agglutination, fibrinolysis, secretion, and immunity were significantly changed after MI. Nppa, Serpina3n, and Anxa1, three secreted proteins that can easily be detected in blood, were significantly changed after MI. Our discoveries not only reveal the molecular and cellular changes in MI but also identify potential candidate biomarkers of MI for clinical diagnosis or treatment. More... »

PAGES

73

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41420-019-0152-z

DOI

http://dx.doi.org/10.1038/s41420-019-0152-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112507801

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30854232


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yanfei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Cuiping", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Tingting", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Linlin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Fangzhou", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Yueling", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "Tongji University affiliated Eastern Hospital, 200092, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Junwei", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.3390/ijms17101770", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000898924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2012.00354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001445952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/fca-2016-0044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004164123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0b013e3182285a81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004850675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep40508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004946403", 
          "https://doi.org/10.1038/srep40508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/hsz-2016-0180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008851100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yjmcc.2013.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016151853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(16)30677-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019742340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023247882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pmic.201500453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023914636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehu299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027510318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.yjmcc.2013.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040272981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040370538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000443098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041176080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.243162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043558486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.243162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043558486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m114.040675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043643410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m114.040675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043643410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gene.2015.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049743903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1230719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.116.303577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063343800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.116.303577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063343800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/auto.21036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072289561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jproteome.7b00107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084123697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000479995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091228925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13613-018-0366-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101141192", 
          "https://doi.org/10.1186/s13613-018-0366-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13613-018-0366-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101141192", 
          "https://doi.org/10.1186/s13613-018-0366-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13613-018-0366-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101141192", 
          "https://doi.org/10.1186/s13613-018-0366-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/jaha.117.008024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103519425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcsm.12315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105452569"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "As the most severe manifestation of coronary artery disease, myocardial infarction (MI) is a complex and multifactorial pathophysiologic process. However, the pathogenesis that underlies MI remains unclear. Here, we generated a MI mouse model by ligation of the proximal left anterior descending coronary artery. The transcriptome and proteome, at different time points after MI, were detected and analysed. Immune-related pathways, cell cycle-related pathways, and extracellular matrix remodelling-related pathways were significantly increased after MI. Not only innate immune cells but also adaptive immune cells participated in the early stage of MI. Proteins that functioned in blood agglutination, fibrinolysis, secretion, and immunity were significantly changed after MI. Nppa, Serpina3n, and Anxa1, three secreted proteins that can easily be detected in blood, were significantly changed after MI. Our discoveries not only reveal the molecular and cellular changes in MI but also identify potential candidate biomarkers of MI for clinical diagnosis or treatment.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41420-019-0152-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052270", 
        "issn": [
          "2058-7716"
        ], 
        "name": "Cell Death Discovery", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "5"
      }
    ], 
    "name": "The whole transcriptome and proteome changes in the early stage of myocardial infarction", 
    "pagination": "73", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "55253eb25cc3cede235ab40876d57941c239ecb2a8833a6950de3d6ba8a6c596"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30854232"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101665035"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41420-019-0152-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112507801"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41420-019-0152-z", 
      "https://app.dimensions.ai/details/publication/pub.1112507801"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78953_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41420-019-0152-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41420-019-0152-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41420-019-0152-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41420-019-0152-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41420-019-0152-z'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41420-019-0152-z schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N4fc1020091ca4df6bd4cbd2d11b260b1
4 schema:citation sg:pub.10.1038/nprot.2008.211
5 sg:pub.10.1038/srep40508
6 sg:pub.10.1186/s13613-018-0366-x
7 https://doi.org/10.1002/jcsm.12315
8 https://doi.org/10.1002/pmic.201500453
9 https://doi.org/10.1016/j.gene.2015.06.029
10 https://doi.org/10.1016/j.yjmcc.2013.04.023
11 https://doi.org/10.1016/j.yjmcc.2013.11.015
12 https://doi.org/10.1016/s0140-6736(16)30677-8
13 https://doi.org/10.1021/acs.jproteome.7b00107
14 https://doi.org/10.1074/mcp.m114.040675
15 https://doi.org/10.1093/bioinformatics/btp616
16 https://doi.org/10.1093/eurheartj/ehu299
17 https://doi.org/10.1126/science.1230719
18 https://doi.org/10.1159/000443098
19 https://doi.org/10.1159/000479995
20 https://doi.org/10.1161/cir.0b013e3182285a81
21 https://doi.org/10.1161/circresaha.111.243162
22 https://doi.org/10.1161/circresaha.116.303577
23 https://doi.org/10.1161/jaha.117.008024
24 https://doi.org/10.1371/journal.pcbi.1000217
25 https://doi.org/10.1515/hsz-2016-0180
26 https://doi.org/10.2217/fca-2016-0044
27 https://doi.org/10.3389/fimmu.2012.00354
28 https://doi.org/10.3390/ijms17101770
29 https://doi.org/10.4161/auto.21036
30 schema:datePublished 2019-12
31 schema:datePublishedReg 2019-12-01
32 schema:description As the most severe manifestation of coronary artery disease, myocardial infarction (MI) is a complex and multifactorial pathophysiologic process. However, the pathogenesis that underlies MI remains unclear. Here, we generated a MI mouse model by ligation of the proximal left anterior descending coronary artery. The transcriptome and proteome, at different time points after MI, were detected and analysed. Immune-related pathways, cell cycle-related pathways, and extracellular matrix remodelling-related pathways were significantly increased after MI. Not only innate immune cells but also adaptive immune cells participated in the early stage of MI. Proteins that functioned in blood agglutination, fibrinolysis, secretion, and immunity were significantly changed after MI. Nppa, Serpina3n, and Anxa1, three secreted proteins that can easily be detected in blood, were significantly changed after MI. Our discoveries not only reveal the molecular and cellular changes in MI but also identify potential candidate biomarkers of MI for clinical diagnosis or treatment.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N0bd2f086604e4e9bb069be500c823b7d
37 Ndd6a8890a0554757b357325756d73a70
38 sg:journal.1052270
39 schema:name The whole transcriptome and proteome changes in the early stage of myocardial infarction
40 schema:pagination 73
41 schema:productId N26f089806f7f474795c166edd0e96659
42 Nb78c5e95516045a3b2778526901b7c87
43 Nd5769d3cbbe646ce81e20c9d0b30cd93
44 Nd579b4b6433a4ad0b9d4cf57a73f3b0b
45 Nfdf33ee01a644dddaf561e77098cc5c4
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112507801
47 https://doi.org/10.1038/s41420-019-0152-z
48 schema:sdDatePublished 2019-04-11T13:19
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nc3bea45ccc1c457b856d6e2f131810e3
51 schema:url https://www.nature.com/articles/s41420-019-0152-z
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N0bd2f086604e4e9bb069be500c823b7d schema:issueNumber 1
56 rdf:type schema:PublicationIssue
57 N13528bc5514e4261997d79747013ee2c rdf:first N9f476cd69dd44bd0bf3fef0dbdea9d1f
58 rdf:rest Ne8a1918cfc8a46e5b0b985cc326b75ba
59 N20d3561942194094bfc30d9c9c3c00d2 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
60 schema:familyName Wang
61 schema:givenName Cuiping
62 rdf:type schema:Person
63 N22903d3f84ba4ed5a815a31946f029bd schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
64 schema:familyName Jin
65 schema:givenName Yueling
66 rdf:type schema:Person
67 N2534b7d282e44252938e0a949bd050a2 rdf:first N22903d3f84ba4ed5a815a31946f029bd
68 rdf:rest Na1cef4e5cf8344c5972d19fba4abbcbd
69 N26f089806f7f474795c166edd0e96659 schema:name dimensions_id
70 schema:value pub.1112507801
71 rdf:type schema:PropertyValue
72 N3c7d82f8fa23421fbbe847cabb38e7ec schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
73 schema:familyName Ma
74 schema:givenName Linlin
75 rdf:type schema:Person
76 N4fc1020091ca4df6bd4cbd2d11b260b1 rdf:first N8b6a17f4c03844aabe254a2cb8dfcd33
77 rdf:rest Nc7dfe254127c48549894cfca9c089597
78 N860749d1351b4aaf9f295d64c8e9b603 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
79 schema:familyName Fan
80 schema:givenName Fangzhou
81 rdf:type schema:Person
82 N8b6a17f4c03844aabe254a2cb8dfcd33 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
83 schema:familyName Li
84 schema:givenName Yanfei
85 rdf:type schema:Person
86 N9246f4adbd784250b76ef00ea4caff4d rdf:first N860749d1351b4aaf9f295d64c8e9b603
87 rdf:rest N2534b7d282e44252938e0a949bd050a2
88 N9f476cd69dd44bd0bf3fef0dbdea9d1f schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
89 schema:familyName Li
90 schema:givenName Tingting
91 rdf:type schema:Person
92 Na1cef4e5cf8344c5972d19fba4abbcbd rdf:first Nc5e9ee8fde054e4881c5c30e919ec794
93 rdf:rest rdf:nil
94 Nb78c5e95516045a3b2778526901b7c87 schema:name doi
95 schema:value 10.1038/s41420-019-0152-z
96 rdf:type schema:PropertyValue
97 Nc3bea45ccc1c457b856d6e2f131810e3 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nc5e9ee8fde054e4881c5c30e919ec794 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
100 schema:familyName Shen
101 schema:givenName Junwei
102 rdf:type schema:Person
103 Nc7dfe254127c48549894cfca9c089597 rdf:first N20d3561942194094bfc30d9c9c3c00d2
104 rdf:rest N13528bc5514e4261997d79747013ee2c
105 Nd5769d3cbbe646ce81e20c9d0b30cd93 schema:name pubmed_id
106 schema:value 30854232
107 rdf:type schema:PropertyValue
108 Nd579b4b6433a4ad0b9d4cf57a73f3b0b schema:name readcube_id
109 schema:value 55253eb25cc3cede235ab40876d57941c239ecb2a8833a6950de3d6ba8a6c596
110 rdf:type schema:PropertyValue
111 Ndd6a8890a0554757b357325756d73a70 schema:volumeNumber 5
112 rdf:type schema:PublicationVolume
113 Ne8a1918cfc8a46e5b0b985cc326b75ba rdf:first N3c7d82f8fa23421fbbe847cabb38e7ec
114 rdf:rest N9246f4adbd784250b76ef00ea4caff4d
115 Nfdf33ee01a644dddaf561e77098cc5c4 schema:name nlm_unique_id
116 schema:value 101665035
117 rdf:type schema:PropertyValue
118 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
119 schema:name Biological Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biochemistry and Cell Biology
123 rdf:type schema:DefinedTerm
124 sg:journal.1052270 schema:issn 2058-7716
125 schema:name Cell Death Discovery
126 rdf:type schema:Periodical
127 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
128 https://doi.org/10.1038/nprot.2008.211
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/srep40508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004946403
131 https://doi.org/10.1038/srep40508
132 rdf:type schema:CreativeWork
133 sg:pub.10.1186/s13613-018-0366-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101141192
134 https://doi.org/10.1186/s13613-018-0366-x
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/jcsm.12315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105452569
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/pmic.201500453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023914636
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.gene.2015.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049743903
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.yjmcc.2013.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040272981
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.yjmcc.2013.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016151853
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s0140-6736(16)30677-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019742340
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/acs.jproteome.7b00107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084123697
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1074/mcp.m114.040675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043643410
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1093/bioinformatics/btp616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023247882
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/eurheartj/ehu299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027510318
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.1230719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467744
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1159/000443098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041176080
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1159/000479995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091228925
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1161/cir.0b013e3182285a81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004850675
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1161/circresaha.111.243162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043558486
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1161/circresaha.116.303577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063343800
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1161/jaha.117.008024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103519425
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1371/journal.pcbi.1000217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040370538
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1515/hsz-2016-0180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008851100
173 rdf:type schema:CreativeWork
174 https://doi.org/10.2217/fca-2016-0044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004164123
175 rdf:type schema:CreativeWork
176 https://doi.org/10.3389/fimmu.2012.00354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001445952
177 rdf:type schema:CreativeWork
178 https://doi.org/10.3390/ijms17101770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000898924
179 rdf:type schema:CreativeWork
180 https://doi.org/10.4161/auto.21036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072289561
181 rdf:type schema:CreativeWork
182 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
183 schema:name Tongji University affiliated Eastern Hospital, 200092, Shanghai, China
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
186 schema:name Shanghai University of Medicine & Health Sciences, 201318, Shanghai, China
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...