Validation analysis of the novel imaging-based prognostic radiomic signature in patients undergoing primary surgery for advanced high-grade serous ovarian cancer ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-12-18

AUTHORS

Christina Fotopoulou, Andrea Rockall, Haonan Lu, Philippa Lee, Giacomo Avesani, Luca Russo, Federica Petta, Beyhan Ataseven, Kai-Uwe Waltering, Jens Albrecht Koch, William R. Crum, Paula Cunnea, Florian Heitz, Philipp Harter, Eric O. Aboagye, Andreas du Bois, Sonia Prader

ABSTRACT

BackgroundPredictive models based on radiomics features are novel, highly promising approaches for gynaecological oncology. Here, we wish to assess the prognostic value of the newly discovered Radiomic Prognostic Vector (RPV) in an independent cohort of high-grade serous ovarian cancer (HGSOC) patients, treated within a Centre of Excellence, thus avoiding any bias in treatment quality.MethodsRPV was calculated using standardised algorithms following segmentation of routine preoperative imaging of patients (n = 323) who underwent upfront debulking surgery (01/2011-07/2018). RPV was correlated with operability, survival and adjusted for well-established prognostic factors (age, postoperative residual disease, stage), and compared to previous validation models.ResultsThe distribution of low, medium and high RPV scores was 54.2% (n = 175), 33.4% (n = 108) and 12.4% (n = 40) across the cohort, respectively. High RPV scores independently associated with significantly worse progression-free survival (PFS) (HR = 1.69; 95% CI:1.06–2.71; P = 0.038), even after adjusting for stage, age, performance status and residual disease. Moreover, lower RPV was significantly associated with total macroscopic tumour clearance (OR = 2.02; 95% CI:1.56–2.62; P = 0.00647).ConclusionsRPV was validated to independently identify those HGSOC patients who will not be operated tumour-free in an optimal setting, and those who will relapse early despite complete tumour clearance upfront. Further prospective, multicentre trials with a translational aspect are warranted for the incorporation of this radiomics approach into clinical routine. More... »

PAGES

1047-1054

References to SciGraph publications

  • 2019-05-17. Stromal organization as predictive biomarker for the treatment of colon cancer with adjuvant bevacizumab; a post-hoc analysis of the AVANT trial in CELLULAR ONCOLOGY
  • 2018-05-08. Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months in EUROPEAN RADIOLOGY
  • 2021-04-16. Noninvasive prediction of residual disease for advanced high-grade serous ovarian carcinoma by MRI-based radiomic-clinical nomogram in EUROPEAN RADIOLOGY
  • 2009-11-07. Prognostic Impact of Additional Extended Surgical Procedures in Advanced-Stage Primary Ovarian Cancer in ANNALS OF SURGICAL ONCOLOGY
  • 2019-02-15. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer in NATURE COMMUNICATIONS
  • 2020-04-06. Integration of proteomics with CT-based qualitative and radiomic features in high-grade serous ovarian cancer patients: an exploratory analysis in EUROPEAN RADIOLOGY
  • 2017-03-13. A novel representation of inter-site tumour heterogeneity from pre-treatment computed tomography textures classifies ovarian cancers by clinical outcome in EUROPEAN RADIOLOGY
  • 2015-10-23. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer in NATURE REVIEWS CANCER
  • 2014-04-24. Principles and methods of integrative genomic analyses in cancer in NATURE REVIEWS CANCER
  • 2018-09-01. Discovery of pre-therapy 2-deoxy-2-18F-fluoro-D-glucose positron emission tomography-based radiomics classifiers of survival outcome in non-small-cell lung cancer patients in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2018-11-24. Association between CT-texture-derived tumor heterogeneity, outcomes, and BRCA mutation status in patients with high-grade serous ovarian cancer in ABDOMINAL RADIOLOGY
  • 2021-01-21. Discovery of a biomarker candidate for surgical stratification in high-grade serous ovarian cancer in BRITISH JOURNAL OF CANCER
  • 2018-05-14. Predictive potential of tumour-stroma ratio on benefit from adjuvant bevacizumab in high-risk stage II and stage III colon cancer in BRITISH JOURNAL OF CANCER
  • 2020-08-17. Integrative radiogenomics for virtual biopsy and treatment monitoring in ovarian cancer in INSIGHTS INTO IMAGING
  • 2021-03-16. Creation and validation of models to predict response to primary treatment in serous ovarian cancer in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41416-021-01662-w

    DOI

    http://dx.doi.org/10.1038/s41416-021-01662-w

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1144001422

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/34923575


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oncology and Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm Recurrence, Local", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasm, Residual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Ovarian Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prognosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fotopoulou", 
            "givenName": "Christina", 
            "id": "sg:person.01007323601.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007323601.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
                "Department of Radiology, Imperial College Healthcare NHS Trust, W12 0HS, London, UK", 
                "Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rockall", 
            "givenName": "Andrea", 
            "id": "sg:person.0767534533.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767534533.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Haonan", 
            "id": "sg:person.016401334405.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401334405.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Imperial College Healthcare NHS Trust, W12 0HS, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.417895.6", 
              "name": [
                "Department of Radiology, Imperial College Healthcare NHS Trust, W12 0HS, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Philippa", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.414603.4", 
              "name": [
                "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
                "Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
                "Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Avesani", 
            "givenName": "Giacomo", 
            "id": "sg:person.07741510461.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741510461.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.414603.4", 
              "name": [
                "Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Russo", 
            "givenName": "Luca", 
            "id": "sg:person.015615142623.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015615142623.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy", 
              "id": "http://www.grid.ac/institutes/grid.414603.4", 
              "name": [
                "Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Petta", 
            "givenName": "Federica", 
            "id": "sg:person.012445536405.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012445536405.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, University Hospital, LMU Munich, M\u00fcnchen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany", 
                "Department of Obstetrics and Gynecology, University Hospital, LMU Munich, M\u00fcnchen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ataseven", 
            "givenName": "Beyhan", 
            "id": "sg:person.01055774132.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055774132.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461714.1", 
              "name": [
                "Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Waltering", 
            "givenName": "Kai-Uwe", 
            "id": "sg:person.011231725606.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231725606.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461714.1", 
              "name": [
                "Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Koch", 
            "givenName": "Jens Albrecht", 
            "id": "sg:person.01230075746.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230075746.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Translational Medicine and Therapeutics (ITMAT), Imperial College, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
                "Institute of Translational Medicine and Therapeutics (ITMAT), Imperial College, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crum", 
            "givenName": "William R.", 
            "id": "sg:person.012036753502.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036753502.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cunnea", 
            "givenName": "Paula", 
            "id": "sg:person.01333254423.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333254423.43"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department for Gynecology with the Center for Oncologic Surgery Charit\u00e9 Campus Virchow-Klinikum, Charit\u00e9\u2014Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin, Humboldt-Universit\u00e4t zu Berlin, and Berlin Institute of Health, Berlin, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7468.d", 
              "name": [
                "Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany", 
                "Department for Gynecology with the Center for Oncologic Surgery Charit\u00e9 Campus Virchow-Klinikum, Charit\u00e9\u2014Universit\u00e4tsmedizin Berlin, corporate member of Freie Universit\u00e4t Berlin, Humboldt-Universit\u00e4t zu Berlin, and Berlin Institute of Health, Berlin, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Heitz", 
            "givenName": "Florian", 
            "id": "sg:person.0643043273.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643043273.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461714.1", 
              "name": [
                "Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harter", 
            "givenName": "Philipp", 
            "id": "sg:person.01001147210.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001147210.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.7445.2", 
              "name": [
                "Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aboagye", 
            "givenName": "Eric O.", 
            "id": "sg:person.01000053751.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000053751.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany", 
              "id": "http://www.grid.ac/institutes/grid.461714.1", 
              "name": [
                "Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "du Bois", 
            "givenName": "Andreas", 
            "id": "sg:person.01300434727.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300434727.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5361.1", 
              "name": [
                "Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany", 
                "Department of Obstetrics and Gynecology, Brixen General Hospital, Brixen, Italy", 
                "Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prader", 
            "givenName": "Sonia", 
            "id": "sg:person.0762633757.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762633757.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/s41416-020-01252-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1134739197", 
              "https://doi.org/10.1038/s41416-020-01252-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-021-85256-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1136423171", 
              "https://doi.org/10.1038/s41598-021-85256-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4779-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084020740", 
              "https://doi.org/10.1007/s00330-017-4779-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13244-020-00895-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1130150590", 
              "https://doi.org/10.1186/s13244-020-00895-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1245/s10434-009-0787-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025753011", 
              "https://doi.org/10.1245/s10434-009-0787-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41416-018-0083-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103931779", 
              "https://doi.org/10.1038/s41416-018-0083-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13402-019-00449-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114524056", 
              "https://doi.org/10.1007/s13402-019-00449-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-019-08718-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112165486", 
              "https://doi.org/10.1038/s41467-019-08718-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-018-1840-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110176713", 
              "https://doi.org/10.1007/s00261-018-1840-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc3721", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021543125", 
              "https://doi.org/10.1038/nrc3721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-021-07902-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1137258027", 
              "https://doi.org/10.1007/s00330-021-07902-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc4019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019760275", 
              "https://doi.org/10.1038/nrc4019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5389-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103859251", 
              "https://doi.org/10.1007/s00330-018-5389-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-018-4139-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106466984", 
              "https://doi.org/10.1007/s00259-018-4139-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-020-06755-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1126180869", 
              "https://doi.org/10.1007/s00330-020-06755-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-12-18", 
        "datePublishedReg": "2021-12-18", 
        "description": "BackgroundPredictive models based on radiomics features are novel, highly promising approaches for gynaecological oncology. Here, we wish to assess the prognostic value of the newly discovered Radiomic Prognostic Vector (RPV) in an independent cohort of high-grade serous ovarian cancer (HGSOC) patients, treated within a Centre of Excellence, thus avoiding any bias in treatment quality.MethodsRPV was calculated using standardised algorithms following segmentation of routine preoperative imaging of patients (n\u2009=\u2009323) who underwent upfront debulking surgery (01/2011-07/2018). RPV was correlated with operability, survival and adjusted for well-established prognostic factors (age, postoperative residual disease, stage), and compared to previous validation models.ResultsThe distribution of low, medium and high RPV scores was 54.2% (n\u2009=\u2009175), 33.4% (n\u2009=\u2009108) and 12.4% (n\u2009=\u200940) across the cohort, respectively. High RPV scores independently associated with significantly worse progression-free survival (PFS) (HR\u2009=\u20091.69; 95% CI:1.06\u20132.71; P\u2009=\u20090.038), even after adjusting for stage, age, performance status and residual disease. Moreover, lower RPV was significantly associated with total macroscopic tumour clearance (OR\u2009=\u20092.02; 95% CI:1.56\u20132.62; P\u2009=\u20090.00647).ConclusionsRPV was validated to independently identify those HGSOC patients who will not be operated tumour-free in an optimal setting, and those who will relapse early despite complete tumour clearance upfront. Further prospective, multicentre trials with a translational aspect are warranted for the incorporation of this radiomics approach into clinical routine.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41416-021-01662-w", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1017082", 
            "issn": [
              "0007-0920", 
              "1532-1827"
            ], 
            "name": "British Journal of Cancer", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "126"
          }
        ], 
        "keywords": [
          "high-grade serous ovarian cancer", 
          "progression-free survival", 
          "tumor clearance", 
          "advanced high-grade serous ovarian cancer", 
          "high-grade serous ovarian cancer patients", 
          "worse progression-free survival", 
          "serous ovarian cancer patients", 
          "macroscopic tumor clearance", 
          "prognostic radiomic signature", 
          "complete tumor clearance", 
          "ovarian cancer patients", 
          "serous ovarian cancer", 
          "routine preoperative imaging", 
          "primary surgery", 
          "performance status", 
          "prognostic factors", 
          "prognostic value", 
          "preoperative imaging", 
          "residual disease", 
          "gynaecological oncology", 
          "cancer patients", 
          "HGSOC patients", 
          "ovarian cancer", 
          "radiomics signature", 
          "independent cohort", 
          "patients", 
          "clinical routine", 
          "radiomic features", 
          "translational aspects", 
          "radiomics approach", 
          "treatment quality", 
          "centers of excellence", 
          "surgery", 
          "cohort", 
          "clearance", 
          "survival", 
          "scores", 
          "multicentre", 
          "cancer", 
          "validation analysis", 
          "disease", 
          "oncology", 
          "age", 
          "status", 
          "imaging", 
          "promising approach", 
          "setting", 
          "factors", 
          "center", 
          "validation model", 
          "stage", 
          "quality", 
          "routines", 
          "bias", 
          "analysis", 
          "features", 
          "model", 
          "excellence", 
          "approach", 
          "aspects", 
          "incorporation", 
          "values", 
          "optimal settings", 
          "signatures", 
          "vector", 
          "operability", 
          "distribution", 
          "segmentation", 
          "algorithm"
        ], 
        "name": "Validation analysis of the novel imaging-based prognostic radiomic signature in patients undergoing primary surgery for advanced high-grade serous ovarian cancer (HGSOC)", 
        "pagination": "1047-1054", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1144001422"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41416-021-01662-w"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "34923575"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41416-021-01662-w", 
          "https://app.dimensions.ai/details/publication/pub.1144001422"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_915.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41416-021-01662-w"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41416-021-01662-w'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41416-021-01662-w'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41416-021-01662-w'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41416-021-01662-w'


     

    This table displays all metadata directly associated to this object as RDF triples.

    361 TRIPLES      22 PREDICATES      117 URIs      93 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41416-021-01662-w schema:about N073d15ce01ef4bb6a2ddbbf4897e698d
    2 N0a8be857fc20478799d92c9ccef5b362
    3 N2e5a5ba331a948c58e2456fd7c110185
    4 N9abaef24b8644073b6d22a6ee32a8109
    5 Nae6ea7a6c4874e9e82096722f36221a4
    6 Ndcd409912d754f6082c25fbe94c07471
    7 anzsrc-for:11
    8 anzsrc-for:1103
    9 anzsrc-for:1112
    10 schema:author Nbc5ad00d95964f6bac2ba67c66276878
    11 schema:citation sg:pub.10.1007/s00259-018-4139-4
    12 sg:pub.10.1007/s00261-018-1840-5
    13 sg:pub.10.1007/s00330-017-4779-y
    14 sg:pub.10.1007/s00330-018-5389-z
    15 sg:pub.10.1007/s00330-020-06755-3
    16 sg:pub.10.1007/s00330-021-07902-0
    17 sg:pub.10.1007/s13402-019-00449-9
    18 sg:pub.10.1038/nrc3721
    19 sg:pub.10.1038/nrc4019
    20 sg:pub.10.1038/s41416-018-0083-0
    21 sg:pub.10.1038/s41416-020-01252-2
    22 sg:pub.10.1038/s41467-019-08718-9
    23 sg:pub.10.1038/s41598-021-85256-9
    24 sg:pub.10.1186/s13244-020-00895-2
    25 sg:pub.10.1245/s10434-009-0787-8
    26 schema:datePublished 2021-12-18
    27 schema:datePublishedReg 2021-12-18
    28 schema:description BackgroundPredictive models based on radiomics features are novel, highly promising approaches for gynaecological oncology. Here, we wish to assess the prognostic value of the newly discovered Radiomic Prognostic Vector (RPV) in an independent cohort of high-grade serous ovarian cancer (HGSOC) patients, treated within a Centre of Excellence, thus avoiding any bias in treatment quality.MethodsRPV was calculated using standardised algorithms following segmentation of routine preoperative imaging of patients (n = 323) who underwent upfront debulking surgery (01/2011-07/2018). RPV was correlated with operability, survival and adjusted for well-established prognostic factors (age, postoperative residual disease, stage), and compared to previous validation models.ResultsThe distribution of low, medium and high RPV scores was 54.2% (n = 175), 33.4% (n = 108) and 12.4% (n = 40) across the cohort, respectively. High RPV scores independently associated with significantly worse progression-free survival (PFS) (HR = 1.69; 95% CI:1.06–2.71; P = 0.038), even after adjusting for stage, age, performance status and residual disease. Moreover, lower RPV was significantly associated with total macroscopic tumour clearance (OR = 2.02; 95% CI:1.56–2.62; P = 0.00647).ConclusionsRPV was validated to independently identify those HGSOC patients who will not be operated tumour-free in an optimal setting, and those who will relapse early despite complete tumour clearance upfront. Further prospective, multicentre trials with a translational aspect are warranted for the incorporation of this radiomics approach into clinical routine.
    29 schema:genre article
    30 schema:inLanguage en
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N3a9b04633edd459aa791f38b49fb7682
    33 N9f1cb33159ae41819bcd0b16e62dd915
    34 sg:journal.1017082
    35 schema:keywords HGSOC patients
    36 advanced high-grade serous ovarian cancer
    37 age
    38 algorithm
    39 analysis
    40 approach
    41 aspects
    42 bias
    43 cancer
    44 cancer patients
    45 center
    46 centers of excellence
    47 clearance
    48 clinical routine
    49 cohort
    50 complete tumor clearance
    51 disease
    52 distribution
    53 excellence
    54 factors
    55 features
    56 gynaecological oncology
    57 high-grade serous ovarian cancer
    58 high-grade serous ovarian cancer patients
    59 imaging
    60 incorporation
    61 independent cohort
    62 macroscopic tumor clearance
    63 model
    64 multicentre
    65 oncology
    66 operability
    67 optimal settings
    68 ovarian cancer
    69 ovarian cancer patients
    70 patients
    71 performance status
    72 preoperative imaging
    73 primary surgery
    74 prognostic factors
    75 prognostic radiomic signature
    76 prognostic value
    77 progression-free survival
    78 promising approach
    79 quality
    80 radiomic features
    81 radiomics approach
    82 radiomics signature
    83 residual disease
    84 routine preoperative imaging
    85 routines
    86 scores
    87 segmentation
    88 serous ovarian cancer
    89 serous ovarian cancer patients
    90 setting
    91 signatures
    92 stage
    93 status
    94 surgery
    95 survival
    96 translational aspects
    97 treatment quality
    98 tumor clearance
    99 validation analysis
    100 validation model
    101 values
    102 vector
    103 worse progression-free survival
    104 schema:name Validation analysis of the novel imaging-based prognostic radiomic signature in patients undergoing primary surgery for advanced high-grade serous ovarian cancer (HGSOC)
    105 schema:pagination 1047-1054
    106 schema:productId N2ecc97668dca45c3a68559e54e0cac51
    107 Nb698a21725e64a58b1841e35a05c19ed
    108 Nc37c9159fab4402db410551b0077c84a
    109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144001422
    110 https://doi.org/10.1038/s41416-021-01662-w
    111 schema:sdDatePublished 2022-05-20T07:39
    112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    113 schema:sdPublisher N475d8c4fe2624f0f93052308931b8fa8
    114 schema:url https://doi.org/10.1038/s41416-021-01662-w
    115 sgo:license sg:explorer/license/
    116 sgo:sdDataset articles
    117 rdf:type schema:ScholarlyArticle
    118 N014ef8bbd1b4424c8445b635141a720c rdf:first sg:person.0643043273.53
    119 rdf:rest N3d9e3c6c3c78473b9157bce96aaa3f0e
    120 N073d15ce01ef4bb6a2ddbbf4897e698d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Neoplasm, Residual
    122 rdf:type schema:DefinedTerm
    123 N0a8be857fc20478799d92c9ccef5b362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Neoplasm Recurrence, Local
    125 rdf:type schema:DefinedTerm
    126 N0b626fdce7f44929ad109ee21645eae7 rdf:first sg:person.016401334405.95
    127 rdf:rest N59f6b674965e4845a274bb43efe4fc6b
    128 N1707492097f54b18823796d3d7d42fd7 rdf:first sg:person.0762633757.90
    129 rdf:rest rdf:nil
    130 N23276b1a4f674840a9e0f9b81bbd00ab rdf:first sg:person.07741510461.54
    131 rdf:rest N79eec2c979574e8490b238a047990ebe
    132 N2e5a5ba331a948c58e2456fd7c110185 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Prognosis
    134 rdf:type schema:DefinedTerm
    135 N2ecc97668dca45c3a68559e54e0cac51 schema:name pubmed_id
    136 schema:value 34923575
    137 rdf:type schema:PropertyValue
    138 N3a9b04633edd459aa791f38b49fb7682 schema:volumeNumber 126
    139 rdf:type schema:PublicationVolume
    140 N3d9e3c6c3c78473b9157bce96aaa3f0e rdf:first sg:person.01001147210.98
    141 rdf:rest N8eeb25b29fe0490fae19f240827f85e7
    142 N3f2e1b1b4e15493b892dc018245a2189 rdf:first sg:person.01055774132.85
    143 rdf:rest N8497d92621dd457ebc377526d04163b5
    144 N43bf31b5621b45fd9a7f9205d18e59c2 rdf:first sg:person.01333254423.43
    145 rdf:rest N014ef8bbd1b4424c8445b635141a720c
    146 N475d8c4fe2624f0f93052308931b8fa8 schema:name Springer Nature - SN SciGraph project
    147 rdf:type schema:Organization
    148 N59f6b674965e4845a274bb43efe4fc6b rdf:first Nf080b28122884e03986ad12e012d415b
    149 rdf:rest N23276b1a4f674840a9e0f9b81bbd00ab
    150 N79eec2c979574e8490b238a047990ebe rdf:first sg:person.015615142623.58
    151 rdf:rest Neef4bf9cc90644c9b25b05c47cb966bf
    152 N80310dcf7151497ba364e93b44fdd4db rdf:first sg:person.01300434727.46
    153 rdf:rest N1707492097f54b18823796d3d7d42fd7
    154 N8497d92621dd457ebc377526d04163b5 rdf:first sg:person.011231725606.89
    155 rdf:rest Nbeaffb142b1344f5bb3bdd365c62ff37
    156 N8eeb25b29fe0490fae19f240827f85e7 rdf:first sg:person.01000053751.67
    157 rdf:rest N80310dcf7151497ba364e93b44fdd4db
    158 N9abaef24b8644073b6d22a6ee32a8109 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Ovarian Neoplasms
    160 rdf:type schema:DefinedTerm
    161 N9f1cb33159ae41819bcd0b16e62dd915 schema:issueNumber 7
    162 rdf:type schema:PublicationIssue
    163 Nae6ea7a6c4874e9e82096722f36221a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Humans
    165 rdf:type schema:DefinedTerm
    166 Nb698a21725e64a58b1841e35a05c19ed schema:name doi
    167 schema:value 10.1038/s41416-021-01662-w
    168 rdf:type schema:PropertyValue
    169 Nbc5ad00d95964f6bac2ba67c66276878 rdf:first sg:person.01007323601.25
    170 rdf:rest Nd5d2b27b7ee3494081d766d653e787e6
    171 Nbeaffb142b1344f5bb3bdd365c62ff37 rdf:first sg:person.01230075746.29
    172 rdf:rest Nc7ae9e2761174bdb9801c6a41b452018
    173 Nc37c9159fab4402db410551b0077c84a schema:name dimensions_id
    174 schema:value pub.1144001422
    175 rdf:type schema:PropertyValue
    176 Nc7ae9e2761174bdb9801c6a41b452018 rdf:first sg:person.012036753502.20
    177 rdf:rest N43bf31b5621b45fd9a7f9205d18e59c2
    178 Nd5d2b27b7ee3494081d766d653e787e6 rdf:first sg:person.0767534533.05
    179 rdf:rest N0b626fdce7f44929ad109ee21645eae7
    180 Ndcd409912d754f6082c25fbe94c07471 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Retrospective Studies
    182 rdf:type schema:DefinedTerm
    183 Neef4bf9cc90644c9b25b05c47cb966bf rdf:first sg:person.012445536405.58
    184 rdf:rest N3f2e1b1b4e15493b892dc018245a2189
    185 Nf080b28122884e03986ad12e012d415b schema:affiliation grid-institutes:grid.417895.6
    186 schema:familyName Lee
    187 schema:givenName Philippa
    188 rdf:type schema:Person
    189 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Medical and Health Sciences
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Clinical Sciences
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Oncology and Carcinogenesis
    197 rdf:type schema:DefinedTerm
    198 sg:journal.1017082 schema:issn 0007-0920
    199 1532-1827
    200 schema:name British Journal of Cancer
    201 schema:publisher Springer Nature
    202 rdf:type schema:Periodical
    203 sg:person.01000053751.67 schema:affiliation grid-institutes:grid.7445.2
    204 schema:familyName Aboagye
    205 schema:givenName Eric O.
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000053751.67
    207 rdf:type schema:Person
    208 sg:person.01001147210.98 schema:affiliation grid-institutes:grid.461714.1
    209 schema:familyName Harter
    210 schema:givenName Philipp
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001147210.98
    212 rdf:type schema:Person
    213 sg:person.01007323601.25 schema:affiliation grid-institutes:grid.7445.2
    214 schema:familyName Fotopoulou
    215 schema:givenName Christina
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007323601.25
    217 rdf:type schema:Person
    218 sg:person.01055774132.85 schema:affiliation grid-institutes:grid.5252.0
    219 schema:familyName Ataseven
    220 schema:givenName Beyhan
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055774132.85
    222 rdf:type schema:Person
    223 sg:person.011231725606.89 schema:affiliation grid-institutes:grid.461714.1
    224 schema:familyName Waltering
    225 schema:givenName Kai-Uwe
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011231725606.89
    227 rdf:type schema:Person
    228 sg:person.012036753502.20 schema:affiliation grid-institutes:grid.7445.2
    229 schema:familyName Crum
    230 schema:givenName William R.
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036753502.20
    232 rdf:type schema:Person
    233 sg:person.01230075746.29 schema:affiliation grid-institutes:grid.461714.1
    234 schema:familyName Koch
    235 schema:givenName Jens Albrecht
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230075746.29
    237 rdf:type schema:Person
    238 sg:person.012445536405.58 schema:affiliation grid-institutes:grid.414603.4
    239 schema:familyName Petta
    240 schema:givenName Federica
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012445536405.58
    242 rdf:type schema:Person
    243 sg:person.01300434727.46 schema:affiliation grid-institutes:grid.461714.1
    244 schema:familyName du Bois
    245 schema:givenName Andreas
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300434727.46
    247 rdf:type schema:Person
    248 sg:person.01333254423.43 schema:affiliation grid-institutes:grid.7445.2
    249 schema:familyName Cunnea
    250 schema:givenName Paula
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333254423.43
    252 rdf:type schema:Person
    253 sg:person.015615142623.58 schema:affiliation grid-institutes:grid.414603.4
    254 schema:familyName Russo
    255 schema:givenName Luca
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015615142623.58
    257 rdf:type schema:Person
    258 sg:person.016401334405.95 schema:affiliation grid-institutes:grid.7445.2
    259 schema:familyName Lu
    260 schema:givenName Haonan
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016401334405.95
    262 rdf:type schema:Person
    263 sg:person.0643043273.53 schema:affiliation grid-institutes:grid.7468.d
    264 schema:familyName Heitz
    265 schema:givenName Florian
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643043273.53
    267 rdf:type schema:Person
    268 sg:person.0762633757.90 schema:affiliation grid-institutes:grid.5361.1
    269 schema:familyName Prader
    270 schema:givenName Sonia
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762633757.90
    272 rdf:type schema:Person
    273 sg:person.0767534533.05 schema:affiliation grid-institutes:grid.7445.2
    274 schema:familyName Rockall
    275 schema:givenName Andrea
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767534533.05
    277 rdf:type schema:Person
    278 sg:person.07741510461.54 schema:affiliation grid-institutes:grid.414603.4
    279 schema:familyName Avesani
    280 schema:givenName Giacomo
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741510461.54
    282 rdf:type schema:Person
    283 sg:pub.10.1007/s00259-018-4139-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106466984
    284 https://doi.org/10.1007/s00259-018-4139-4
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s00261-018-1840-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110176713
    287 https://doi.org/10.1007/s00261-018-1840-5
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1007/s00330-017-4779-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1084020740
    290 https://doi.org/10.1007/s00330-017-4779-y
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1007/s00330-018-5389-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103859251
    293 https://doi.org/10.1007/s00330-018-5389-z
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1007/s00330-020-06755-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126180869
    296 https://doi.org/10.1007/s00330-020-06755-3
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1007/s00330-021-07902-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137258027
    299 https://doi.org/10.1007/s00330-021-07902-0
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1007/s13402-019-00449-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114524056
    302 https://doi.org/10.1007/s13402-019-00449-9
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nrc3721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021543125
    305 https://doi.org/10.1038/nrc3721
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nrc4019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019760275
    308 https://doi.org/10.1038/nrc4019
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/s41416-018-0083-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103931779
    311 https://doi.org/10.1038/s41416-018-0083-0
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/s41416-020-01252-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1134739197
    314 https://doi.org/10.1038/s41416-020-01252-2
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/s41467-019-08718-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112165486
    317 https://doi.org/10.1038/s41467-019-08718-9
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/s41598-021-85256-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136423171
    320 https://doi.org/10.1038/s41598-021-85256-9
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1186/s13244-020-00895-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130150590
    323 https://doi.org/10.1186/s13244-020-00895-2
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1245/s10434-009-0787-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025753011
    326 https://doi.org/10.1245/s10434-009-0787-8
    327 rdf:type schema:CreativeWork
    328 grid-institutes:grid.414603.4 schema:alternateName Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
    329 schema:name Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK
    330 Department of Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
    331 Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK
    332 rdf:type schema:Organization
    333 grid-institutes:grid.417895.6 schema:alternateName Department of Radiology, Imperial College Healthcare NHS Trust, W12 0HS, London, UK
    334 schema:name Department of Radiology, Imperial College Healthcare NHS Trust, W12 0HS, London, UK
    335 rdf:type schema:Organization
    336 grid-institutes:grid.461714.1 schema:alternateName Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
    337 Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
    338 schema:name Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
    339 Department of Radiology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
    340 rdf:type schema:Organization
    341 grid-institutes:grid.5252.0 schema:alternateName Department of Obstetrics and Gynecology, University Hospital, LMU Munich, München, Germany
    342 schema:name Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
    343 Department of Obstetrics and Gynecology, University Hospital, LMU Munich, München, Germany
    344 rdf:type schema:Organization
    345 grid-institutes:grid.5361.1 schema:alternateName Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
    346 schema:name Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
    347 Department of Obstetrics and Gynecology, Brixen General Hospital, Brixen, Italy
    348 Department of Obstetrics and Gynecology, Innsbruck Medical University, Innsbruck, Austria
    349 rdf:type schema:Organization
    350 grid-institutes:grid.7445.2 schema:alternateName Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK
    351 Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK
    352 Institute of Translational Medicine and Therapeutics (ITMAT), Imperial College, London, UK
    353 schema:name Cancer Imaging Centre, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK
    354 Department of Radiology, Imperial College Healthcare NHS Trust, W12 0HS, London, UK
    355 Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, W12 0HS, London, UK
    356 Institute of Translational Medicine and Therapeutics (ITMAT), Imperial College, London, UK
    357 rdf:type schema:Organization
    358 grid-institutes:grid.7468.d schema:alternateName Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
    359 schema:name Department for Gynecology with the Center for Oncologic Surgery Charité Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
    360 Department of Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Henricistr.92, 45136, Essen, Germany
    361 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...