Ultra-high field MRI reveals mood-related circuit disturbances in depression: a comparison between 3-Tesla and 7-Tesla View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Laurel S. Morris, Prantik Kundu, Sara Costi, Abigail Collins, Molly Schneider, Gaurav Verma, Priti Balchandani, James W. Murrough

ABSTRACT

Ultra-high field 7-Tesla (7 T) MRI has the potential to advance our understanding of neuropsychiatric disorders, including major depressive disorder (MDD). To date, few studies have quantified the advantage of resting state functional MRI (fMRI) at 7 T compared to 3-Tesla (3 T). We conducted a series of experiments that demonstrate the improvement in temporal signal-to-noise ratio (TSNR) of a multi-echo multi-band fMRI protocol with ultra-high field 7 T MRI, compared to a similar protocol using 3 T MRI in healthy controls (HC). We also directly tested the enhancement in ultra-high field 7 T fMRI signal power by examining the ventral tegmental area (VTA), a small midbrain structure that is critical to the expected neuropathology of MDD but difficult to discern with standard 3 T MRI. We demonstrate up to 300% improvement in TSNR and resting state functional connectivity coefficients provided by ultra-high field 7 T fMRI compared to 3 T, indicating enhanced power for detection of functional neural architecture. A multi-echo based acquisition protocol and signal denoising pipeline afforded greater gain in signal power compared to classic acquisition and denoising pipelines. Furthermore, ultra-high field fMRI revealed mood-related neurocircuit disturbances in patients with MDD compared to HC, which were not detectable with 3 T fMRI. Ultra-high field 7 T fMRI may provide an effective tool for studying functional neural architecture relevant to MDD and other neuropsychiatric disorders. More... »

PAGES

94

Journal

TITLE

Translational Psychiatry

ISSUE

1

VOLUME

9

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41398-019-0425-6

    DOI

    http://dx.doi.org/10.1038/s41398-019-0425-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112165429

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30770788


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morris", 
            "givenName": "Laurel S.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kundu", 
            "givenName": "Prantik", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Costi", 
            "givenName": "Sara", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Collins", 
            "givenName": "Abigail", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schneider", 
            "givenName": "Molly", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Verma", 
            "givenName": "Gaurav", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balchandani", 
            "givenName": "Priti", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Icahn School of Medicine at Mount Sinai", 
              "id": "https://www.grid.ac/institutes/grid.59734.3c", 
              "name": [
                "The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA", 
                "The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murrough", 
            "givenName": "James W.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.biopsych.2005.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000600441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biopsych.2005.05.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000600441"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1999.tb09260.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000864165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1749-6632.1999.tb09260.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000864165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.12.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001803742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2005.01.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002801922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2016.11.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003358613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2009.05.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003539498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnsys.2010.00041", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004347453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/brain/aws059", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004646761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2003.12.048", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006202830"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3174/ajnr.a4180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008218161"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2013.07.055", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011592759"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2016.10.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012519953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2009.10.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013060147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0069294", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013310004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2015.04.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017549389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1249240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017783579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biopsych.2006.09.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018439942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cortex.2015.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020016603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/nimg.2001.0802", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021282197"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/475027a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023457450", 
              "https://doi.org/10.1038/475027a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.media.2007.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025777243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.597854", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026334105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1000446107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028085591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028094878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejrad.2011.09.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029569352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2011.08.096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031294383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0730-725x(02)00563-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033811971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0730-725x(02)00563-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033811971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms11671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037206165", 
              "https://doi.org/10.1038/ncomms11671"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jchemneu.2003.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037613031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.biopsych.2005.02.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044232627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/hbm.22564", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045265535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2010.09.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046803124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fnhum.2014.00196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047268321"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047872945", 
              "https://doi.org/10.1038/nature11713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn3381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047984213", 
              "https://doi.org/10.1038/nrn3381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/cbmr.1996.0014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048518447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0891-0618(99)00009-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052208285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/brain.2013.0154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059239745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1176/appi.ajp.2008.08081201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063498359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1192/bjp.134.4.382", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064167142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1192/bjp.167.1.99", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064172533"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2017.03.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084098809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1614961114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084940388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2017.05.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085992794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2018.03.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101891838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2018.03.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101891838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpsyt.2018.00163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103944825"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Ultra-high field 7-Tesla (7\u2009T) MRI has the potential to advance our understanding of neuropsychiatric disorders, including major depressive disorder (MDD). To date, few studies have quantified the advantage of resting state functional MRI (fMRI) at 7\u2009T compared to 3-Tesla (3\u2009T). We conducted a series of experiments that demonstrate the improvement in temporal signal-to-noise ratio (TSNR) of a multi-echo multi-band fMRI protocol with ultra-high field 7\u2009T MRI, compared to a similar protocol using 3\u2009T MRI in healthy controls (HC). We also directly tested the enhancement in ultra-high field 7\u2009T fMRI signal power by examining the ventral tegmental area (VTA), a small midbrain structure that is critical to the expected neuropathology of MDD but difficult to discern with standard 3\u2009T MRI. We demonstrate up to 300% improvement in TSNR and resting state functional connectivity coefficients provided by ultra-high field 7\u2009T fMRI compared to 3\u2009T, indicating enhanced power for detection of functional neural architecture. A multi-echo based acquisition protocol and signal denoising pipeline afforded greater gain in signal power compared to classic acquisition and denoising pipelines. Furthermore, ultra-high field fMRI revealed mood-related neurocircuit disturbances in patients with MDD compared to HC, which were not detectable with 3\u2009T fMRI. Ultra-high field 7\u2009T fMRI may provide an effective tool for studying functional neural architecture relevant to MDD and other neuropsychiatric disorders.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41398-019-0425-6", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6442675", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6442888", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045271", 
            "issn": [
              "2158-3188"
            ], 
            "name": "Translational Psychiatry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Ultra-high field MRI reveals mood-related circuit disturbances in depression: a comparison between 3-Tesla and 7-Tesla", 
        "pagination": "94", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e7ba63215dc47204e2fdd676f7535afffecb8a78c73de1408291b935bb466808"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30770788"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101562664"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41398-019-0425-6"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112165429"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41398-019-0425-6", 
          "https://app.dimensions.ai/details/publication/pub.1112165429"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41398-019-0425-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0425-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0425-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0425-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0425-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    256 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41398-019-0425-6 schema:about anzsrc-for:11
    2 anzsrc-for:1109
    3 schema:author N17b9ebca377e4c06af7e11e049ed8b30
    4 schema:citation sg:pub.10.1038/475027a
    5 sg:pub.10.1038/nature11713
    6 sg:pub.10.1038/ncomms11671
    7 sg:pub.10.1038/nrn3381
    8 https://doi.org/10.1002/hbm.22564
    9 https://doi.org/10.1006/cbmr.1996.0014
    10 https://doi.org/10.1006/nimg.2001.0802
    11 https://doi.org/10.1016/j.biopsych.2005.02.021
    12 https://doi.org/10.1016/j.biopsych.2005.05.019
    13 https://doi.org/10.1016/j.biopsych.2006.09.020
    14 https://doi.org/10.1016/j.celrep.2017.05.062
    15 https://doi.org/10.1016/j.cortex.2015.11.004
    16 https://doi.org/10.1016/j.ejrad.2011.09.025
    17 https://doi.org/10.1016/j.jchemneu.2003.10.003
    18 https://doi.org/10.1016/j.media.2007.06.004
    19 https://doi.org/10.1016/j.neuroimage.2003.12.048
    20 https://doi.org/10.1016/j.neuroimage.2005.01.007
    21 https://doi.org/10.1016/j.neuroimage.2009.05.015
    22 https://doi.org/10.1016/j.neuroimage.2009.10.002
    23 https://doi.org/10.1016/j.neuroimage.2010.09.025
    24 https://doi.org/10.1016/j.neuroimage.2011.05.010
    25 https://doi.org/10.1016/j.neuroimage.2011.08.096
    26 https://doi.org/10.1016/j.neuroimage.2011.12.028
    27 https://doi.org/10.1016/j.neuroimage.2013.07.055
    28 https://doi.org/10.1016/j.neuroimage.2015.04.052
    29 https://doi.org/10.1016/j.neuroimage.2016.10.034
    30 https://doi.org/10.1016/j.neuroimage.2016.11.049
    31 https://doi.org/10.1016/j.neuroimage.2017.03.033
    32 https://doi.org/10.1016/j.neuroimage.2018.03.071
    33 https://doi.org/10.1016/s0730-725x(02)00563-5
    34 https://doi.org/10.1016/s0891-0618(99)00009-5
    35 https://doi.org/10.1073/pnas.1000446107
    36 https://doi.org/10.1073/pnas.1614961114
    37 https://doi.org/10.1089/brain.2013.0154
    38 https://doi.org/10.1093/brain/aws059
    39 https://doi.org/10.1111/j.1749-6632.1999.tb09260.x
    40 https://doi.org/10.1118/1.597854
    41 https://doi.org/10.1126/science.1249240
    42 https://doi.org/10.1176/appi.ajp.2008.08081201
    43 https://doi.org/10.1192/bjp.134.4.382
    44 https://doi.org/10.1192/bjp.167.1.99
    45 https://doi.org/10.1371/journal.pone.0069294
    46 https://doi.org/10.3174/ajnr.a4180
    47 https://doi.org/10.3389/fnhum.2014.00196
    48 https://doi.org/10.3389/fnsys.2010.00041
    49 https://doi.org/10.3389/fpsyt.2018.00163
    50 schema:datePublished 2019-12
    51 schema:datePublishedReg 2019-12-01
    52 schema:description Ultra-high field 7-Tesla (7 T) MRI has the potential to advance our understanding of neuropsychiatric disorders, including major depressive disorder (MDD). To date, few studies have quantified the advantage of resting state functional MRI (fMRI) at 7 T compared to 3-Tesla (3 T). We conducted a series of experiments that demonstrate the improvement in temporal signal-to-noise ratio (TSNR) of a multi-echo multi-band fMRI protocol with ultra-high field 7 T MRI, compared to a similar protocol using 3 T MRI in healthy controls (HC). We also directly tested the enhancement in ultra-high field 7 T fMRI signal power by examining the ventral tegmental area (VTA), a small midbrain structure that is critical to the expected neuropathology of MDD but difficult to discern with standard 3 T MRI. We demonstrate up to 300% improvement in TSNR and resting state functional connectivity coefficients provided by ultra-high field 7 T fMRI compared to 3 T, indicating enhanced power for detection of functional neural architecture. A multi-echo based acquisition protocol and signal denoising pipeline afforded greater gain in signal power compared to classic acquisition and denoising pipelines. Furthermore, ultra-high field fMRI revealed mood-related neurocircuit disturbances in patients with MDD compared to HC, which were not detectable with 3 T fMRI. Ultra-high field 7 T fMRI may provide an effective tool for studying functional neural architecture relevant to MDD and other neuropsychiatric disorders.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree true
    56 schema:isPartOf Nd78657b4ad0f40b3a684cd8d3cc772f4
    57 Nf274b23a4ee848a0b48feb90dcbc0b3f
    58 sg:journal.1045271
    59 schema:name Ultra-high field MRI reveals mood-related circuit disturbances in depression: a comparison between 3-Tesla and 7-Tesla
    60 schema:pagination 94
    61 schema:productId N16346a532d6e4d05bb7bb2983f97348c
    62 N2fb0a4ca65704c5b8be2dedd1eb4ae31
    63 N40a0c9357d744e9397aa0cfc660d7561
    64 N587165af1db14e70b677ac496d307c89
    65 N7b06185ffaf548149bc0a87e2bf03a7f
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112165429
    67 https://doi.org/10.1038/s41398-019-0425-6
    68 schema:sdDatePublished 2019-04-11T09:31
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N6bb9a591bcb94f578fb54242402de306
    71 schema:url https://www.nature.com/articles/s41398-019-0425-6
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N08fafef262f74c3aac8536621f22801f rdf:first N8b285642d3b642219e9f5f06ba035100
    76 rdf:rest N7aa5a58e4ce54754872bd9a5aac401cf
    77 N16346a532d6e4d05bb7bb2983f97348c schema:name pubmed_id
    78 schema:value 30770788
    79 rdf:type schema:PropertyValue
    80 N17b9ebca377e4c06af7e11e049ed8b30 rdf:first Nba2bf47eeee44c2e923e5caa45fe512f
    81 rdf:rest N548586e98e2b4a24bc02cd4d3f76e5a4
    82 N2fb0a4ca65704c5b8be2dedd1eb4ae31 schema:name dimensions_id
    83 schema:value pub.1112165429
    84 rdf:type schema:PropertyValue
    85 N3364b88d813b47a69298c862087b5000 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    86 schema:familyName Murrough
    87 schema:givenName James W.
    88 rdf:type schema:Person
    89 N375993ad913d4619ab7ab695c6c4621d schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    90 schema:familyName Kundu
    91 schema:givenName Prantik
    92 rdf:type schema:Person
    93 N40a0c9357d744e9397aa0cfc660d7561 schema:name readcube_id
    94 schema:value e7ba63215dc47204e2fdd676f7535afffecb8a78c73de1408291b935bb466808
    95 rdf:type schema:PropertyValue
    96 N52e221cc38ea41c2b303b19b82866a3c rdf:first Na3c39d18d8154031b823042365bdde03
    97 rdf:rest N9473e3b7103248118461bf850b87d251
    98 N548586e98e2b4a24bc02cd4d3f76e5a4 rdf:first N375993ad913d4619ab7ab695c6c4621d
    99 rdf:rest N52e221cc38ea41c2b303b19b82866a3c
    100 N5782d74115eb4378b6b50a9ddb5ca637 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    101 schema:familyName Collins
    102 schema:givenName Abigail
    103 rdf:type schema:Person
    104 N587165af1db14e70b677ac496d307c89 schema:name doi
    105 schema:value 10.1038/s41398-019-0425-6
    106 rdf:type schema:PropertyValue
    107 N6bb9a591bcb94f578fb54242402de306 schema:name Springer Nature - SN SciGraph project
    108 rdf:type schema:Organization
    109 N7aa5a58e4ce54754872bd9a5aac401cf rdf:first Nf8316be2b1794f6a8ec7f1619bffa6d2
    110 rdf:rest Nfbe32b25469a4f1b98369a163b081933
    111 N7b06185ffaf548149bc0a87e2bf03a7f schema:name nlm_unique_id
    112 schema:value 101562664
    113 rdf:type schema:PropertyValue
    114 N8b285642d3b642219e9f5f06ba035100 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    115 schema:familyName Verma
    116 schema:givenName Gaurav
    117 rdf:type schema:Person
    118 N9470f28040104d868822588224e0c811 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    119 schema:familyName Schneider
    120 schema:givenName Molly
    121 rdf:type schema:Person
    122 N9473e3b7103248118461bf850b87d251 rdf:first N5782d74115eb4378b6b50a9ddb5ca637
    123 rdf:rest Na78c8192858340b0b8916f22d61f9dae
    124 Na3c39d18d8154031b823042365bdde03 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    125 schema:familyName Costi
    126 schema:givenName Sara
    127 rdf:type schema:Person
    128 Na78c8192858340b0b8916f22d61f9dae rdf:first N9470f28040104d868822588224e0c811
    129 rdf:rest N08fafef262f74c3aac8536621f22801f
    130 Nba2bf47eeee44c2e923e5caa45fe512f schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    131 schema:familyName Morris
    132 schema:givenName Laurel S.
    133 rdf:type schema:Person
    134 Nd78657b4ad0f40b3a684cd8d3cc772f4 schema:issueNumber 1
    135 rdf:type schema:PublicationIssue
    136 Nf274b23a4ee848a0b48feb90dcbc0b3f schema:volumeNumber 9
    137 rdf:type schema:PublicationVolume
    138 Nf8316be2b1794f6a8ec7f1619bffa6d2 schema:affiliation https://www.grid.ac/institutes/grid.59734.3c
    139 schema:familyName Balchandani
    140 schema:givenName Priti
    141 rdf:type schema:Person
    142 Nfbe32b25469a4f1b98369a163b081933 rdf:first N3364b88d813b47a69298c862087b5000
    143 rdf:rest rdf:nil
    144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Medical and Health Sciences
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Neurosciences
    149 rdf:type schema:DefinedTerm
    150 sg:grant.6442675 http://pending.schema.org/fundedItem sg:pub.10.1038/s41398-019-0425-6
    151 rdf:type schema:MonetaryGrant
    152 sg:grant.6442888 http://pending.schema.org/fundedItem sg:pub.10.1038/s41398-019-0425-6
    153 rdf:type schema:MonetaryGrant
    154 sg:journal.1045271 schema:issn 2158-3188
    155 schema:name Translational Psychiatry
    156 rdf:type schema:Periodical
    157 sg:pub.10.1038/475027a schema:sameAs https://app.dimensions.ai/details/publication/pub.1023457450
    158 https://doi.org/10.1038/475027a
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1038/nature11713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047872945
    161 https://doi.org/10.1038/nature11713
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1038/ncomms11671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037206165
    164 https://doi.org/10.1038/ncomms11671
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1038/nrn3381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047984213
    167 https://doi.org/10.1038/nrn3381
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1002/hbm.22564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265535
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1006/cbmr.1996.0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048518447
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1006/nimg.2001.0802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021282197
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.biopsych.2005.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044232627
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.biopsych.2005.05.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000600441
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.biopsych.2006.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018439942
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1016/j.celrep.2017.05.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085992794
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1016/j.cortex.2015.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020016603
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1016/j.ejrad.2011.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029569352
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1016/j.jchemneu.2003.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037613031
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1016/j.media.2007.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025777243
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1016/j.neuroimage.2003.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006202830
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/j.neuroimage.2005.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002801922
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.neuroimage.2009.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003539498
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1016/j.neuroimage.2009.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013060147
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1016/j.neuroimage.2010.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046803124
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1016/j.neuroimage.2011.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028094878
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1016/j.neuroimage.2011.08.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031294383
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1016/j.neuroimage.2011.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001803742
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1016/j.neuroimage.2013.07.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011592759
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1016/j.neuroimage.2015.04.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017549389
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1016/j.neuroimage.2016.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012519953
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1016/j.neuroimage.2016.11.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003358613
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1016/j.neuroimage.2017.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084098809
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1016/j.neuroimage.2018.03.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101891838
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1016/s0730-725x(02)00563-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033811971
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1016/s0891-0618(99)00009-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052208285
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1073/pnas.1000446107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028085591
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1073/pnas.1614961114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084940388
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.1089/brain.2013.0154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059239745
    228 rdf:type schema:CreativeWork
    229 https://doi.org/10.1093/brain/aws059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004646761
    230 rdf:type schema:CreativeWork
    231 https://doi.org/10.1111/j.1749-6632.1999.tb09260.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000864165
    232 rdf:type schema:CreativeWork
    233 https://doi.org/10.1118/1.597854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026334105
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1126/science.1249240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017783579
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1176/appi.ajp.2008.08081201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063498359
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1192/bjp.134.4.382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064167142
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1192/bjp.167.1.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064172533
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1371/journal.pone.0069294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013310004
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.3174/ajnr.a4180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218161
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.3389/fnhum.2014.00196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047268321
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.3389/fnsys.2010.00041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004347453
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.3389/fpsyt.2018.00163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103944825
    252 rdf:type schema:CreativeWork
    253 https://www.grid.ac/institutes/grid.59734.3c schema:alternateName Icahn School of Medicine at Mount Sinai
    254 schema:name The Mood and Anxiety Disorders Program, Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
    255 The Translational and Molecular Imaging Institute, Department of Radiology, The Icahn School of Medicine at Mount Sinai, 10029, New York, NY, USA
    256 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...