Multimodel inference for biomarker development: an application to schizophrenia View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Jason D. Cooper, Sung Yeon Sarah Han, Jakub Tomasik, Sureyya Ozcan, Nitin Rustogi, Nico J. M. van Beveren, F. Markus Leweke, Sabine Bahn

ABSTRACT

In the present study, to improve the predictive performance of a model and its reproducibility when applied to an independent data set, we investigated the use of multimodel inference to predict the probability of having a complex psychiatric disorder. We formed training and test sets using proteomic data (147 peptides from 77 proteins) from two-independent collections of first-onset drug-naive schizophrenia patients and controls. A set of prediction models was produced by applying lasso regression with repeated tenfold cross-validation to the training set. We used feature extraction and model averaging across the set of models to form two prediction models. The resulting models clearly demonstrated the utility of a multimodel based approach to make good (training set AUC > 0.80) and reproducible predictions (test set AUC > 0.80) for the probability of having schizophrenia. Moreover, we identified four proteins (five peptides) whose effect on the probability of having schizophrenia was modified by sex, one of which was a novel potential biomarker of schizophrenia, foetal haemoglobin. The evidence of effect modification suggests that future schizophrenia studies should be conducted in males and females separately. Future biomarker studies should consider adopting a multimodel approach and going beyond the main effects of features. More... »

PAGES

83

References to SciGraph publications

  • 2017-12. Schizophrenia-risk and urban birth are associated with proteomic changes in neonatal dried blood spots in TRANSLATIONAL PSYCHIATRY
  • 2007-01. Abnormal changes of plasma acute phase proteins in schizophrenia and the relation between schizophrenia and haptoglobin (Hp) gene in AMINO ACIDS
  • 2004. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach in NONE
  • 2010-11. Global proteomic profiling reveals altered proteomic signature in schizophrenia serum in MOLECULAR PSYCHIATRY
  • 2001. The Elements of Statistical Learning, Data Mining, Inference, and Prediction in NONE
  • 2011. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) in ENCYCLOPEDIA OF CHILD BEHAVIOR AND DEVELOPMENT
  • 2018-05-02. Association between serum lipid levels, osteoprotegerin and depressive symptomatology in psychotic disorders in EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE
  • 2015-03. Psychiatric blood biomarkers: avoiding jumping to premature negative or positive conclusions in MOLECULAR PSYCHIATRY
  • 2015-07. Development of a blood-based molecular biomarker test for identification of schizophrenia before disease onset in TRANSLATIONAL PSYCHIATRY
  • 2012-12. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? in MOLECULAR PSYCHIATRY
  • 2016-07. Variation in serum biomarkers with sex and female hormonal status: implications for clinical tests in SCIENTIFIC REPORTS
  • 2016-05-25. 1,500 scientists lift the lid on reproducibility in NATURE
  • 2017-12. Towards reproducible MRM based biomarker discovery using dried blood spots in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41398-019-0419-4

    DOI

    http://dx.doi.org/10.1038/s41398-019-0419-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112057734

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30745560


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cooper", 
            "givenName": "Jason D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Sung Yeon Sarah", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tomasik", 
            "givenName": "Jakub", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Middle East Technical University", 
              "id": "https://www.grid.ac/institutes/grid.6935.9", 
              "name": [
                "Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK", 
                "Department of Chemistry, Middle East Technical University, Ankara, Turkey"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ozcan", 
            "givenName": "Sureyya", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rustogi", 
            "givenName": "Nitin", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Erasmus University Medical Center", 
              "id": "https://www.grid.ac/institutes/grid.5645.2", 
              "name": [
                "Department of Neuroscience, Erasmus Medical Centre, Rotterdam, Netherlands", 
                "Department of Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands", 
                "Department \u201cNieuwe Kennis\u201d, Delta Centre, for Mental Health Care, Rotterdam, Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Beveren", 
            "givenName": "Nico J. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sydney", 
              "id": "https://www.grid.ac/institutes/grid.1013.3", 
              "name": [
                "Brain and Mind Centre, University of Sydney, Sydney, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leweke", 
            "givenName": "F. Markus", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bahn", 
            "givenName": "Sabine", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/mp.2009.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004393442", 
              "https://doi.org/10.1038/mp.2009.54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2009.54", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004393442", 
              "https://doi.org/10.1038/mp.2009.54"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.curtheres.2006.10.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005977310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep26947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008812531", 
              "https://doi.org/10.1038/srep26947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/tp.2015.91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009026786", 
              "https://doi.org/10.1038/tp.2015.91"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/533452a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010295273", 
              "https://doi.org/10.1038/533452a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0078729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012290248"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.0020124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012818229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.0020124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012818229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pmed.0020124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012818229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-005-0292-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013126885", 
              "https://doi.org/10.1007/s00726-005-0292-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00726-005-0292-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013126885", 
              "https://doi.org/10.1007/s00726-005-0292-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2362.2012.02674.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013428709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-79061-9_113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013848715", 
              "https://doi.org/10.1007/978-0-387-79061-9_113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b97636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016630193", 
              "https://doi.org/10.1007/b97636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b97636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016630193", 
              "https://doi.org/10.1007/b97636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/b97636", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016630193", 
              "https://doi.org/10.1007/b97636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-1781(96)02915-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017003980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2012.105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019256439", 
              "https://doi.org/10.1038/mp.2012.105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bti623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020873540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2005.00532.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021238034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-9868.2005.00532.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021238034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1022356842", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21606-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022356842", 
              "https://doi.org/10.1007/978-0-387-21606-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-21606-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022356842", 
              "https://doi.org/10.1007/978-0-387-21606-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022885794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/mp.2014.180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032219433", 
              "https://doi.org/10.1038/mp.2014.180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkw1138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033346264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.psychres.2007.05.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034901819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036379922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/09540261.2010.515205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037592668"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.bbi.2015.10.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043559295"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0009166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045642109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0165-0327(98)00032-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050150231"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0049124104268644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053958566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0049124104268644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053958566"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051916x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ac051916x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054997633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/10618600.2014.938812", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058368960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1176/appi.ajp.2014.14020138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063500318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4137/bmi.s4877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072252581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4137/bmi.s4877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072252581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077437577", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep45178", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084133024", 
              "https://doi.org/10.1038/srep45178"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1192/bjp.bp.117.200907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092106954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1192/bjp.bp.117.200907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092106954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/med/9780198712831.001.0001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095892468"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/15622975.2017.1414305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099664938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41398-017-0027-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099690200", 
              "https://doi.org/10.1038/s41398-017-0027-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4135/9781412984515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100484570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4135/9781412984515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100484570"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00406-018-0897-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103768682", 
              "https://doi.org/10.1007/s00406-018-0897-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00406-018-0897-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103768682", 
              "https://doi.org/10.1007/s00406-018-0897-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458978"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "In the present study, to improve the predictive performance of a model and its reproducibility when applied to an independent data set, we investigated the use of multimodel inference to predict the probability of having a complex psychiatric disorder. We formed training and test sets using proteomic data (147 peptides from 77 proteins) from two-independent collections of first-onset drug-naive schizophrenia patients and controls. A set of prediction models was produced by applying lasso regression with repeated tenfold cross-validation to the training set. We used feature extraction and model averaging across the set of models to form two prediction models. The resulting models clearly demonstrated the utility of a multimodel based approach to make good (training set AUC\u2009>\u20090.80) and reproducible predictions (test set AUC\u2009>\u20090.80) for the probability of having schizophrenia. Moreover, we identified four proteins (five peptides) whose effect on the probability of having schizophrenia was modified by sex, one of which was a novel potential biomarker of schizophrenia, foetal haemoglobin. The evidence of effect modification suggests that future schizophrenia studies should be conducted in males and females separately. Future biomarker studies should consider adopting a multimodel approach and going beyond the main effects of features.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41398-019-0419-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045271", 
            "issn": [
              "2158-3188"
            ], 
            "name": "Translational Psychiatry", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Multimodel inference for biomarker development: an application to schizophrenia", 
        "pagination": "83", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4662f9b10cff722a8e549af87d7e5d010370ceec11b733fc22dbad64994b25e6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30745560"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101562664"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41398-019-0419-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112057734"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41398-019-0419-4", 
          "https://app.dimensions.ai/details/publication/pub.1112057734"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47989_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41398-019-0419-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0419-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0419-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0419-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41398-019-0419-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    252 TRIPLES      21 PREDICATES      69 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41398-019-0419-4 schema:about anzsrc-for:11
    2 anzsrc-for:1103
    3 schema:author Na8dc8c2992ef449c8c1a2303f4012093
    4 schema:citation sg:pub.10.1007/978-0-387-21606-5
    5 sg:pub.10.1007/978-0-387-79061-9_113
    6 sg:pub.10.1007/b97636
    7 sg:pub.10.1007/s00406-018-0897-z
    8 sg:pub.10.1007/s00726-005-0292-8
    9 sg:pub.10.1038/533452a
    10 sg:pub.10.1038/mp.2009.54
    11 sg:pub.10.1038/mp.2012.105
    12 sg:pub.10.1038/mp.2014.180
    13 sg:pub.10.1038/s41398-017-0027-0
    14 sg:pub.10.1038/srep26947
    15 sg:pub.10.1038/srep45178
    16 sg:pub.10.1038/tp.2015.91
    17 https://app.dimensions.ai/details/publication/pub.1022356842
    18 https://app.dimensions.ai/details/publication/pub.1077437577
    19 https://doi.org/10.1016/j.bbi.2015.10.019
    20 https://doi.org/10.1016/j.curtheres.2006.10.003
    21 https://doi.org/10.1016/j.psychres.2007.05.008
    22 https://doi.org/10.1016/s0165-0327(98)00032-9
    23 https://doi.org/10.1016/s0165-1781(96)02915-0
    24 https://doi.org/10.1021/ac051916x
    25 https://doi.org/10.1080/10618600.2014.938812
    26 https://doi.org/10.1080/15622975.2017.1414305
    27 https://doi.org/10.1093/bioinformatics/bti623
    28 https://doi.org/10.1093/bioinformatics/btq054
    29 https://doi.org/10.1093/med/9780198712831.001.0001
    30 https://doi.org/10.1093/nar/gkw1099
    31 https://doi.org/10.1093/nar/gkw1138
    32 https://doi.org/10.1111/j.1365-2362.2012.02674.x
    33 https://doi.org/10.1111/j.1467-9868.2005.00532.x
    34 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
    35 https://doi.org/10.1176/appi.ajp.2014.14020138
    36 https://doi.org/10.1177/0049124104268644
    37 https://doi.org/10.1192/bjp.bp.117.200907
    38 https://doi.org/10.1371/journal.pmed.0020124
    39 https://doi.org/10.1371/journal.pone.0009166
    40 https://doi.org/10.1371/journal.pone.0078729
    41 https://doi.org/10.3109/09540261.2010.515205
    42 https://doi.org/10.4135/9781412984515
    43 https://doi.org/10.4137/bmi.s4877
    44 schema:datePublished 2019-12
    45 schema:datePublishedReg 2019-12-01
    46 schema:description In the present study, to improve the predictive performance of a model and its reproducibility when applied to an independent data set, we investigated the use of multimodel inference to predict the probability of having a complex psychiatric disorder. We formed training and test sets using proteomic data (147 peptides from 77 proteins) from two-independent collections of first-onset drug-naive schizophrenia patients and controls. A set of prediction models was produced by applying lasso regression with repeated tenfold cross-validation to the training set. We used feature extraction and model averaging across the set of models to form two prediction models. The resulting models clearly demonstrated the utility of a multimodel based approach to make good (training set AUC > 0.80) and reproducible predictions (test set AUC > 0.80) for the probability of having schizophrenia. Moreover, we identified four proteins (five peptides) whose effect on the probability of having schizophrenia was modified by sex, one of which was a novel potential biomarker of schizophrenia, foetal haemoglobin. The evidence of effect modification suggests that future schizophrenia studies should be conducted in males and females separately. Future biomarker studies should consider adopting a multimodel approach and going beyond the main effects of features.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree true
    50 schema:isPartOf Nf39148f998f043819ef509a746bd5f24
    51 Nf8ae4e19fd0e49c1bd5d03489d4a9f8e
    52 sg:journal.1045271
    53 schema:name Multimodel inference for biomarker development: an application to schizophrenia
    54 schema:pagination 83
    55 schema:productId N0a632534a9214d6399f9f18cc93d9c4b
    56 N2babeab646d34d399c75e3d5a949f01a
    57 N321660f3e1894078b1a34099eb2e6aa0
    58 N5ee3829ef88a46a294bd5b941e1505eb
    59 N6fd18847dbf749ad89f978a08fa28cbd
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112057734
    61 https://doi.org/10.1038/s41398-019-0419-4
    62 schema:sdDatePublished 2019-04-11T09:13
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N0a1fed19df2749179a995c609ac492ce
    65 schema:url https://www.nature.com/articles/s41398-019-0419-4
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N0a1fed19df2749179a995c609ac492ce schema:name Springer Nature - SN SciGraph project
    70 rdf:type schema:Organization
    71 N0a632534a9214d6399f9f18cc93d9c4b schema:name readcube_id
    72 schema:value 4662f9b10cff722a8e549af87d7e5d010370ceec11b733fc22dbad64994b25e6
    73 rdf:type schema:PropertyValue
    74 N14774796354744ca93c32ee740cb3bb9 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    75 schema:familyName Bahn
    76 schema:givenName Sabine
    77 rdf:type schema:Person
    78 N171611f7af864a1da678c588bab86605 rdf:first Ned6bff81b6cd4581a2dd4cabdd2aa440
    79 rdf:rest Na9c94c6593754de08fd2b0eb3c716b9a
    80 N2babeab646d34d399c75e3d5a949f01a schema:name nlm_unique_id
    81 schema:value 101562664
    82 rdf:type schema:PropertyValue
    83 N321660f3e1894078b1a34099eb2e6aa0 schema:name pubmed_id
    84 schema:value 30745560
    85 rdf:type schema:PropertyValue
    86 N3d45200adbd84667807242eb53671fe6 rdf:first N59dc2c2d7ca246328cf7c29fd4c28a13
    87 rdf:rest N5661994dad7941fcaae313b9dfdffb82
    88 N3e440499b17743e88833c19658bc3a0c schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    89 schema:familyName Han
    90 schema:givenName Sung Yeon Sarah
    91 rdf:type schema:Person
    92 N5661994dad7941fcaae313b9dfdffb82 rdf:first N14774796354744ca93c32ee740cb3bb9
    93 rdf:rest rdf:nil
    94 N59dc2c2d7ca246328cf7c29fd4c28a13 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
    95 schema:familyName Leweke
    96 schema:givenName F. Markus
    97 rdf:type schema:Person
    98 N5ee3829ef88a46a294bd5b941e1505eb schema:name doi
    99 schema:value 10.1038/s41398-019-0419-4
    100 rdf:type schema:PropertyValue
    101 N6fd18847dbf749ad89f978a08fa28cbd schema:name dimensions_id
    102 schema:value pub.1112057734
    103 rdf:type schema:PropertyValue
    104 N822ae8f83baa4720ac5bb9fc9c37f348 rdf:first Nd9ed5feacf004ba2af5b2b1a05c0ff75
    105 rdf:rest N171611f7af864a1da678c588bab86605
    106 N9670e07b47a647ccadb6803c25ff55c5 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
    107 schema:familyName van Beveren
    108 schema:givenName Nico J. M.
    109 rdf:type schema:Person
    110 N967c5f6cf42d49a383d07224bdf8732a schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    111 schema:familyName Cooper
    112 schema:givenName Jason D.
    113 rdf:type schema:Person
    114 Na08b666e87ee45248ffe0f4965036c3c rdf:first N3e440499b17743e88833c19658bc3a0c
    115 rdf:rest Ne2f2e21ab2c44fc5a12f59dd92865dfd
    116 Na8dc8c2992ef449c8c1a2303f4012093 rdf:first N967c5f6cf42d49a383d07224bdf8732a
    117 rdf:rest Na08b666e87ee45248ffe0f4965036c3c
    118 Na9c94c6593754de08fd2b0eb3c716b9a rdf:first N9670e07b47a647ccadb6803c25ff55c5
    119 rdf:rest N3d45200adbd84667807242eb53671fe6
    120 Nd46a407f80ff4a638ccba8284f2d27f7 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    121 schema:familyName Tomasik
    122 schema:givenName Jakub
    123 rdf:type schema:Person
    124 Nd9ed5feacf004ba2af5b2b1a05c0ff75 schema:affiliation https://www.grid.ac/institutes/grid.6935.9
    125 schema:familyName Ozcan
    126 schema:givenName Sureyya
    127 rdf:type schema:Person
    128 Ne2f2e21ab2c44fc5a12f59dd92865dfd rdf:first Nd46a407f80ff4a638ccba8284f2d27f7
    129 rdf:rest N822ae8f83baa4720ac5bb9fc9c37f348
    130 Ned6bff81b6cd4581a2dd4cabdd2aa440 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    131 schema:familyName Rustogi
    132 schema:givenName Nitin
    133 rdf:type schema:Person
    134 Nf39148f998f043819ef509a746bd5f24 schema:volumeNumber 9
    135 rdf:type schema:PublicationVolume
    136 Nf8ae4e19fd0e49c1bd5d03489d4a9f8e schema:issueNumber 1
    137 rdf:type schema:PublicationIssue
    138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Medical and Health Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Clinical Sciences
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1045271 schema:issn 2158-3188
    145 schema:name Translational Psychiatry
    146 rdf:type schema:Periodical
    147 sg:pub.10.1007/978-0-387-21606-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356842
    148 https://doi.org/10.1007/978-0-387-21606-5
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/978-0-387-79061-9_113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013848715
    151 https://doi.org/10.1007/978-0-387-79061-9_113
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/b97636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016630193
    154 https://doi.org/10.1007/b97636
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00406-018-0897-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103768682
    157 https://doi.org/10.1007/s00406-018-0897-z
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00726-005-0292-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013126885
    160 https://doi.org/10.1007/s00726-005-0292-8
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1038/533452a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010295273
    163 https://doi.org/10.1038/533452a
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1038/mp.2009.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004393442
    166 https://doi.org/10.1038/mp.2009.54
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1038/mp.2012.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019256439
    169 https://doi.org/10.1038/mp.2012.105
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/mp.2014.180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032219433
    172 https://doi.org/10.1038/mp.2014.180
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1038/s41398-017-0027-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099690200
    175 https://doi.org/10.1038/s41398-017-0027-0
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/srep26947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008812531
    178 https://doi.org/10.1038/srep26947
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/srep45178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084133024
    181 https://doi.org/10.1038/srep45178
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/tp.2015.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009026786
    184 https://doi.org/10.1038/tp.2015.91
    185 rdf:type schema:CreativeWork
    186 https://app.dimensions.ai/details/publication/pub.1022356842 schema:CreativeWork
    187 https://app.dimensions.ai/details/publication/pub.1077437577 schema:CreativeWork
    188 https://doi.org/10.1016/j.bbi.2015.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043559295
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.curtheres.2006.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005977310
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.psychres.2007.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034901819
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/s0165-0327(98)00032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050150231
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1016/s0165-1781(96)02915-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017003980
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1021/ac051916x schema:sameAs https://app.dimensions.ai/details/publication/pub.1054997633
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1080/10618600.2014.938812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058368960
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1080/15622975.2017.1414305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099664938
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1093/bioinformatics/bti623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020873540
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1093/bioinformatics/btq054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036379922
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1093/med/9780198712831.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095892468
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1093/nar/gkw1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022885794
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1093/nar/gkw1138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033346264
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1111/j.1365-2362.2012.02674.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013428709
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1111/j.1467-9868.2005.00532.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021238034
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458978
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1176/appi.ajp.2014.14020138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063500318
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1177/0049124104268644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053958566
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1192/bjp.bp.117.200907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092106954
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1371/journal.pmed.0020124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012818229
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1371/journal.pone.0009166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045642109
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1371/journal.pone.0078729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012290248
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.3109/09540261.2010.515205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037592668
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.4135/9781412984515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100484570
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.4137/bmi.s4877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072252581
    237 rdf:type schema:CreativeWork
    238 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
    239 schema:name Brain and Mind Centre, University of Sydney, Sydney, Australia
    240 rdf:type schema:Organization
    241 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    242 schema:name Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
    243 rdf:type schema:Organization
    244 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
    245 schema:name Department of Neuroscience, Erasmus Medical Centre, Rotterdam, Netherlands
    246 Department of Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands
    247 Department “Nieuwe Kennis”, Delta Centre, for Mental Health Care, Rotterdam, Netherlands
    248 rdf:type schema:Organization
    249 https://www.grid.ac/institutes/grid.6935.9 schema:alternateName Middle East Technical University
    250 schema:name Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
    251 Department of Chemistry, Middle East Technical University, Ankara, Turkey
    252 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...