Prognostic impact of genetic variants of CYP19A1 and UGT2B17 in a randomized trial for endocrine-responsive postmenopausal breast cancer. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-10

AUTHORS

Harriet Johansson, Valentina Aristarco, Sara Gandini, Jennifer Gjerde, Debora Macis, Aliana Guerrieri-Gonzaga, Davide Serrano, Matteo Lazzeroni, Agnita Rajasekaran, Clark V Williard, Gunnar Mellgren, Andrea DeCensi, Bernardo Bonanni

ABSTRACT

Polymorphisms of genes involved in estrogen synthesis have been linked to breast cancer risk, prognosis, and treatment response. We investigated the prognostic impact of a deletion spanning the entire UGT2B17 gene (UGT2B17*2) and genetic variants of the aromatase CYP19A1 and estrogen receptor α (ESR1) in 125 postmenopausal women with ER-positive breast cancer enrolled in a randomized pre-surgical trial. The UGT2B17*2 was estimated by copy number variation assays and the CYP19A1 rs10046/rs4646 and ESR1 rs2077647/rs2234693/rs9340799 by TaqMan allelic discrimination assays. Serum exemestane/17-hydroxy exemestane were determined by MS and estrone (E1)/estradiol (E2)/ by GC-MS/MS. The association of genetic polymorphisms with "any event" was assessed by the Cox proportional hazards models adjusted for confounders. The UGT2B17*2 was associated with higher levels of 17-hydroxy exemestane (P = 0.04) and better prognosis (HR = 0.45; 95% CI: 0.20-1.01; P = 0.05) compared with homozygote UGT2B17 wt. The CYP19A1 rs10046 A and rs4646 C alleles were associated with higher estrogen levels: rs10046 AA vs. AG/GG genotypes had median E1 of 35.9 vs. 27.4 pg/mL (P = 0.05) and E2 of 7.57 vs. 3.9 pg/mL (P < 0.004). After a median follow-up of 7 years, women carrying the "low estrogen" alleles rs10046 G and rs4646 A had a better prognosis compared with homozygote wt for both polymorphisms (HR = 0.40; 95% CI: 0.17-0.93; P = 0.03). Our analysis points to an impact of UGT2B17 and CYP19A1 in postmenopausal endocrine responsive breast cancer. Carriers of UGT2B17*2 and CYP19A1 low estrogen variants may have better prognosis, supporting studies addressing the role of these polymorphisms in optimizing endocrine therapy. Trial registration: http://www.isrctn.com/ISRCTN86894592 . More... »

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41397-019-0087-z

DOI

http://dx.doi.org/10.1038/s41397-019-0087-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113327818

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30967597


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy. harriet.johansson@ieo.it."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johansson", 
        "givenName": "Harriet", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aristarco", 
        "givenName": "Valentina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gandini", 
        "givenName": "Sara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Haukeland University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412008.f", 
          "name": [
            "Department of Clinical Science, University of Bergen, Bergen, Norway.", 
            "Hormone Laboratory, Haukeland University Hospital, Bergen, Norway."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gjerde", 
        "givenName": "Jennifer", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Macis", 
        "givenName": "Debora", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerrieri-Gonzaga", 
        "givenName": "Aliana", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serrano", 
        "givenName": "Davide", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazzeroni", 
        "givenName": "Matteo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Syneos Health (United States)", 
          "id": "https://www.grid.ac/institutes/grid.492959.a", 
          "name": [
            "Syneos Health, Princeton, NJ, 08540, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rajasekaran", 
        "givenName": "Agnita", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Syneos Health (United States)", 
          "id": "https://www.grid.ac/institutes/grid.492959.a", 
          "name": [
            "Syneos Health, Princeton, NJ, 08540, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williard", 
        "givenName": "Clark V", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Haukeland University Hospital", 
          "id": "https://www.grid.ac/institutes/grid.412008.f", 
          "name": [
            "Department of Clinical Science, University of Bergen, Bergen, Norway.", 
            "Hormone Laboratory, Haukeland University Hospital, Bergen, Norway."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mellgren", 
        "givenName": "Gunnar", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen Mary University of London", 
          "id": "https://www.grid.ac/institutes/grid.4868.2", 
          "name": [
            "Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy.", 
            "Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "DeCensi", 
        "givenName": "Andrea", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Institute of Oncology", 
          "id": "https://www.grid.ac/institutes/grid.15667.33", 
          "name": [
            "Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonanni", 
        "givenName": "Bernardo", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1158/0008-5472.can-09-3224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000239847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-3984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000741636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.12659/msm.894010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.0000016173.98826.88", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003756387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006256853", 
          "https://doi.org/10.1038/ng.586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006256853", 
          "https://doi.org/10.1038/ng.586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00198-011-1662-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006494802", 
          "https://doi.org/10.1007/s00198-011-1662-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-005-0307-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006533442", 
          "https://doi.org/10.1007/s10552-005-0307-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10552-005-0307-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006533442", 
          "https://doi.org/10.1007/s10552-005-0307-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2012.42.0273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008251480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ijms140918973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014520206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/djh167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014572502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-07-1923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018961534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-06-4123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022673321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12916-015-0373-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028891722", 
          "https://doi.org/10.1186/s12916-015-0373-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12916-015-0373-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028891722", 
          "https://doi.org/10.1186/s12916-015-0373-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12916-015-0373-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028891722", 
          "https://doi.org/10.1186/s12916-015-0373-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029457545", 
          "https://doi.org/10.1038/ng.318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030724379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2004.06.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031377525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11033-012-1938-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033981052", 
          "https://doi.org/10.1007/s11033-012-1938-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/03602530903208652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038941212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1078-0432.ccr-09-3092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041551456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-013-2505-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042432432", 
          "https://doi.org/10.1007/s10549-013-2505-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-007-9822-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049094787", 
          "https://doi.org/10.1007/s10549-007-9822-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10549-007-9822-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049094787", 
          "https://doi.org/10.1007/s10549-007-9822-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2015.11.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050192580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051659808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051659808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-03-0026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053050938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7314/apjcp.2012.13.10.5105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053630580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e32833b04af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e32833b04af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e32833b04af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e32833b04af", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1055-9965.epi-15-0324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063224155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-15-0311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063279447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2007-0359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064289907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079120186", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083320100", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fphar.2017.00218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085057165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0177137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085378553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/med.0000000000000411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101143785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/med.0000000000000411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101143785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/med.0000000000000411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101143785"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-10", 
    "datePublishedReg": "2019-04-10", 
    "description": "Polymorphisms of genes involved in estrogen synthesis have been linked to breast cancer risk, prognosis, and treatment response. We investigated the prognostic impact of a deletion spanning the entire UGT2B17 gene (UGT2B17*2) and genetic variants of the aromatase CYP19A1 and estrogen receptor \u03b1 (ESR1) in 125 postmenopausal women with ER-positive breast cancer enrolled in a randomized pre-surgical trial. The UGT2B17*2 was estimated by copy number variation assays and the CYP19A1 rs10046/rs4646 and ESR1 rs2077647/rs2234693/rs9340799 by TaqMan allelic discrimination assays. Serum exemestane/17-hydroxy exemestane were determined by MS and estrone (E1)/estradiol (E2)/ by GC-MS/MS. The association of genetic polymorphisms with \"any event\" was assessed by the Cox proportional hazards models adjusted for confounders. The UGT2B17*2 was associated with higher levels of 17-hydroxy exemestane (P\u2009=\u20090.04) and better prognosis (HR\u2009=\u20090.45; 95% CI: 0.20-1.01; P\u2009=\u20090.05) compared with homozygote UGT2B17 wt. The CYP19A1 rs10046 A and rs4646 C alleles were associated with higher estrogen levels: rs10046 AA vs. AG/GG genotypes had median E1 of 35.9 vs. 27.4\u2009pg/mL (P\u2009=\u20090.05) and E2 of 7.57 vs. 3.9\u2009pg/mL (P\u2009<\u20090.004). After a median follow-up of 7 years, women carrying the \"low estrogen\" alleles rs10046 G and rs4646 A had a better prognosis compared with homozygote wt for both polymorphisms (HR\u2009=\u20090.40; 95% CI: 0.17-0.93; P\u2009=\u20090.03). Our analysis points to an impact of UGT2B17 and CYP19A1 in postmenopausal endocrine responsive breast cancer. Carriers of UGT2B17*2 and CYP19A1 low estrogen variants may have better prognosis, supporting studies addressing the role of these polymorphisms in optimizing endocrine therapy. Trial registration: http://www.isrctn.com/ISRCTN86894592 .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41397-019-0087-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1027238", 
        "issn": [
          "1470-269X", 
          "1473-1150"
        ], 
        "name": "The Pharmacogenomics Journal", 
        "type": "Periodical"
      }
    ], 
    "name": "Prognostic impact of genetic variants of CYP19A1 and UGT2B17 in a randomized trial for endocrine-responsive postmenopausal breast cancer.", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41397-019-0087-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113327818"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101083949"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30967597"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41397-019-0087-z", 
      "https://app.dimensions.ai/details/publication/pub.1113327818"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91462_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/articles/s41397-019-0087-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41397-019-0087-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41397-019-0087-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41397-019-0087-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41397-019-0087-z'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      20 PREDICATES      58 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41397-019-0087-z schema:about anzsrc-for:11
2 anzsrc-for:1112
3 schema:author Nfc7a71bef46a45e5b3e6cb5cd7d5d177
4 schema:citation sg:pub.10.1007/s00198-011-1662-6
5 sg:pub.10.1007/s10549-007-9822-2
6 sg:pub.10.1007/s10549-013-2505-2
7 sg:pub.10.1007/s10552-005-0307-5
8 sg:pub.10.1007/s11033-012-1938-8
9 sg:pub.10.1038/ng.318
10 sg:pub.10.1038/ng.586
11 sg:pub.10.1186/s12916-015-0373-9
12 https://app.dimensions.ai/details/publication/pub.1079120186
13 https://app.dimensions.ai/details/publication/pub.1083320100
14 https://doi.org/10.1016/j.ajhg.2008.10.006
15 https://doi.org/10.1016/j.athoracsur.2015.11.024
16 https://doi.org/10.1016/j.ygeno.2004.06.011
17 https://doi.org/10.1093/hmg/ddg294
18 https://doi.org/10.1093/jnci/djh167
19 https://doi.org/10.1097/fpc.0b013e32833b04af
20 https://doi.org/10.1097/med.0000000000000411
21 https://doi.org/10.1158/0008-5472.can-05-3984
22 https://doi.org/10.1158/0008-5472.can-06-4123
23 https://doi.org/10.1158/0008-5472.can-09-3224
24 https://doi.org/10.1158/1055-9965.epi-03-0026
25 https://doi.org/10.1158/1055-9965.epi-15-0324
26 https://doi.org/10.1158/1078-0432.ccr-07-1923
27 https://doi.org/10.1158/1078-0432.ccr-09-3092
28 https://doi.org/10.1158/1940-6207.capr-15-0311
29 https://doi.org/10.1161/01.cir.0000016173.98826.88
30 https://doi.org/10.1200/jco.2012.42.0273
31 https://doi.org/10.1210/jc.2007-0359
32 https://doi.org/10.12659/msm.894010
33 https://doi.org/10.1371/journal.pone.0177137
34 https://doi.org/10.3109/03602530903208652
35 https://doi.org/10.3389/fphar.2017.00218
36 https://doi.org/10.3390/ijms140918973
37 https://doi.org/10.7314/apjcp.2012.13.10.5105
38 schema:datePublished 2019-04-10
39 schema:datePublishedReg 2019-04-10
40 schema:description Polymorphisms of genes involved in estrogen synthesis have been linked to breast cancer risk, prognosis, and treatment response. We investigated the prognostic impact of a deletion spanning the entire UGT2B17 gene (UGT2B17*2) and genetic variants of the aromatase CYP19A1 and estrogen receptor α (ESR1) in 125 postmenopausal women with ER-positive breast cancer enrolled in a randomized pre-surgical trial. The UGT2B17*2 was estimated by copy number variation assays and the CYP19A1 rs10046/rs4646 and ESR1 rs2077647/rs2234693/rs9340799 by TaqMan allelic discrimination assays. Serum exemestane/17-hydroxy exemestane were determined by MS and estrone (E1)/estradiol (E2)/ by GC-MS/MS. The association of genetic polymorphisms with "any event" was assessed by the Cox proportional hazards models adjusted for confounders. The UGT2B17*2 was associated with higher levels of 17-hydroxy exemestane (P = 0.04) and better prognosis (HR = 0.45; 95% CI: 0.20-1.01; P = 0.05) compared with homozygote UGT2B17 wt. The CYP19A1 rs10046 A and rs4646 C alleles were associated with higher estrogen levels: rs10046 AA vs. AG/GG genotypes had median E1 of 35.9 vs. 27.4 pg/mL (P = 0.05) and E2 of 7.57 vs. 3.9 pg/mL (P < 0.004). After a median follow-up of 7 years, women carrying the "low estrogen" alleles rs10046 G and rs4646 A had a better prognosis compared with homozygote wt for both polymorphisms (HR = 0.40; 95% CI: 0.17-0.93; P = 0.03). Our analysis points to an impact of UGT2B17 and CYP19A1 in postmenopausal endocrine responsive breast cancer. Carriers of UGT2B17*2 and CYP19A1 low estrogen variants may have better prognosis, supporting studies addressing the role of these polymorphisms in optimizing endocrine therapy. Trial registration: http://www.isrctn.com/ISRCTN86894592 .
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1027238
45 schema:name Prognostic impact of genetic variants of CYP19A1 and UGT2B17 in a randomized trial for endocrine-responsive postmenopausal breast cancer.
46 schema:productId N05db39937b24489684e4af514c18e2d8
47 N1f91c1b2c2f844b58492cdfa61ed2030
48 N26c6593887f743eeac0d846398b777af
49 N79a073057c23401b834714eeef753d48
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113327818
51 https://doi.org/10.1038/s41397-019-0087-z
52 schema:sdDatePublished 2019-04-15T09:03
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Neb16762dc42a4271889c837a5450b164
55 schema:url http://www.nature.com/articles/s41397-019-0087-z
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N010c9d58e3e54610b8fb0dd8994e3c7e rdf:first Ne199203925f842a7bb0e70db397ee373
60 rdf:rest Naf4cc37c7657432996627dd0cb3147b8
61 N05db39937b24489684e4af514c18e2d8 schema:name dimensions_id
62 schema:value pub.1113327818
63 rdf:type schema:PropertyValue
64 N1b68e2579a494c278e64c5a0fd38b116 rdf:first N8c5b1b7705bd4ee6ae3dd533385b15e9
65 rdf:rest N322d5a4b3c7545ceacb7989f62ddf3c0
66 N1f91c1b2c2f844b58492cdfa61ed2030 schema:name doi
67 schema:value 10.1038/s41397-019-0087-z
68 rdf:type schema:PropertyValue
69 N26c6593887f743eeac0d846398b777af schema:name nlm_unique_id
70 schema:value 101083949
71 rdf:type schema:PropertyValue
72 N2af5a954477549d98d3a0f6c69443f88 schema:affiliation https://www.grid.ac/institutes/grid.412008.f
73 schema:familyName Gjerde
74 schema:givenName Jennifer
75 rdf:type schema:Person
76 N322d5a4b3c7545ceacb7989f62ddf3c0 rdf:first Ne132fd65c00d447ab0b155fc4d376624
77 rdf:rest N53ea1b57b726489f9c5177349c9ec942
78 N3adb389ed29a473993b5f11502959259 rdf:first Nafb29d292b4140b3a3104486fc8d4b88
79 rdf:rest Nf9d49785f31d4b62821d39727c9538a6
80 N3e6dba2de0384d6fb6aacd76ee45a385 rdf:first N82866a37e1a9450f82824eec34d9df08
81 rdf:rest N010c9d58e3e54610b8fb0dd8994e3c7e
82 N3ff373e829a34bfd8705f98b2065b080 schema:affiliation https://www.grid.ac/institutes/grid.15667.33
83 schema:familyName Aristarco
84 schema:givenName Valentina
85 rdf:type schema:Person
86 N41b6c851bc3747498fb1e33cd9473aeb schema:affiliation https://www.grid.ac/institutes/grid.15667.33
87 schema:familyName Serrano
88 schema:givenName Davide
89 rdf:type schema:Person
90 N53ea1b57b726489f9c5177349c9ec942 rdf:first N7e72b8ea5c2141c1a17565e87c0fcf58
91 rdf:rest rdf:nil
92 N57e51cfc3a874fa69aa1ca9a73e43a37 schema:affiliation https://www.grid.ac/institutes/grid.492959.a
93 schema:familyName Williard
94 schema:givenName Clark V
95 rdf:type schema:Person
96 N6ac4159605ed40748c7d1501e126e82b schema:affiliation https://www.grid.ac/institutes/grid.15667.33
97 schema:familyName Johansson
98 schema:givenName Harriet
99 rdf:type schema:Person
100 N79a073057c23401b834714eeef753d48 schema:name pubmed_id
101 schema:value 30967597
102 rdf:type schema:PropertyValue
103 N7e72b8ea5c2141c1a17565e87c0fcf58 schema:affiliation https://www.grid.ac/institutes/grid.15667.33
104 schema:familyName Bonanni
105 schema:givenName Bernardo
106 rdf:type schema:Person
107 N82866a37e1a9450f82824eec34d9df08 schema:affiliation https://www.grid.ac/institutes/grid.15667.33
108 schema:familyName Macis
109 schema:givenName Debora
110 rdf:type schema:Person
111 N8c5b1b7705bd4ee6ae3dd533385b15e9 schema:affiliation https://www.grid.ac/institutes/grid.412008.f
112 schema:familyName Mellgren
113 schema:givenName Gunnar
114 rdf:type schema:Person
115 Naf4cc37c7657432996627dd0cb3147b8 rdf:first N41b6c851bc3747498fb1e33cd9473aeb
116 rdf:rest Nf81ae7b35c124f15a81747ffaa16b95f
117 Nafb29d292b4140b3a3104486fc8d4b88 schema:affiliation https://www.grid.ac/institutes/grid.492959.a
118 schema:familyName Rajasekaran
119 schema:givenName Agnita
120 rdf:type schema:Person
121 Nbcff058735324d0cb96aadf5530a57ff rdf:first N3ff373e829a34bfd8705f98b2065b080
122 rdf:rest Nbf22cb7a4c3d4a649eb47ed6d360ea46
123 Nbf22cb7a4c3d4a649eb47ed6d360ea46 rdf:first Ncaa4db8929a945b28ff76adc48d996f6
124 rdf:rest Nd5abd07aa71b448288ab2ec718b4c6a0
125 Ncaa4db8929a945b28ff76adc48d996f6 schema:affiliation https://www.grid.ac/institutes/grid.15667.33
126 schema:familyName Gandini
127 schema:givenName Sara
128 rdf:type schema:Person
129 Nd5abd07aa71b448288ab2ec718b4c6a0 rdf:first N2af5a954477549d98d3a0f6c69443f88
130 rdf:rest N3e6dba2de0384d6fb6aacd76ee45a385
131 Ne132fd65c00d447ab0b155fc4d376624 schema:affiliation https://www.grid.ac/institutes/grid.4868.2
132 schema:familyName DeCensi
133 schema:givenName Andrea
134 rdf:type schema:Person
135 Ne199203925f842a7bb0e70db397ee373 schema:affiliation https://www.grid.ac/institutes/grid.15667.33
136 schema:familyName Guerrieri-Gonzaga
137 schema:givenName Aliana
138 rdf:type schema:Person
139 Neb16762dc42a4271889c837a5450b164 schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 Nf27ea3d646d841349c0c2176523a2b76 schema:affiliation https://www.grid.ac/institutes/grid.15667.33
142 schema:familyName Lazzeroni
143 schema:givenName Matteo
144 rdf:type schema:Person
145 Nf81ae7b35c124f15a81747ffaa16b95f rdf:first Nf27ea3d646d841349c0c2176523a2b76
146 rdf:rest N3adb389ed29a473993b5f11502959259
147 Nf9d49785f31d4b62821d39727c9538a6 rdf:first N57e51cfc3a874fa69aa1ca9a73e43a37
148 rdf:rest N1b68e2579a494c278e64c5a0fd38b116
149 Nfc7a71bef46a45e5b3e6cb5cd7d5d177 rdf:first N6ac4159605ed40748c7d1501e126e82b
150 rdf:rest Nbcff058735324d0cb96aadf5530a57ff
151 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
152 schema:name Medical and Health Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
155 schema:name Oncology and Carcinogenesis
156 rdf:type schema:DefinedTerm
157 sg:journal.1027238 schema:issn 1470-269X
158 1473-1150
159 schema:name The Pharmacogenomics Journal
160 rdf:type schema:Periodical
161 sg:pub.10.1007/s00198-011-1662-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006494802
162 https://doi.org/10.1007/s00198-011-1662-6
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s10549-007-9822-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049094787
165 https://doi.org/10.1007/s10549-007-9822-2
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s10549-013-2505-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042432432
168 https://doi.org/10.1007/s10549-013-2505-2
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s10552-005-0307-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006533442
171 https://doi.org/10.1007/s10552-005-0307-5
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11033-012-1938-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033981052
174 https://doi.org/10.1007/s11033-012-1938-8
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ng.318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029457545
177 https://doi.org/10.1038/ng.318
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/ng.586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006256853
180 https://doi.org/10.1038/ng.586
181 rdf:type schema:CreativeWork
182 sg:pub.10.1186/s12916-015-0373-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028891722
183 https://doi.org/10.1186/s12916-015-0373-9
184 rdf:type schema:CreativeWork
185 https://app.dimensions.ai/details/publication/pub.1079120186 schema:CreativeWork
186 https://app.dimensions.ai/details/publication/pub.1083320100 schema:CreativeWork
187 https://doi.org/10.1016/j.ajhg.2008.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051659808
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.athoracsur.2015.11.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050192580
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.ygeno.2004.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031377525
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/hmg/ddg294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030724379
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/jnci/djh167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014572502
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1097/fpc.0b013e32833b04af schema:sameAs https://app.dimensions.ai/details/publication/pub.1060340841
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1097/med.0000000000000411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101143785
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1158/0008-5472.can-05-3984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000741636
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1158/0008-5472.can-06-4123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022673321
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1158/0008-5472.can-09-3224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000239847
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1158/1055-9965.epi-03-0026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053050938
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1158/1055-9965.epi-15-0324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063224155
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1158/1078-0432.ccr-07-1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018961534
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1158/1078-0432.ccr-09-3092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041551456
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1158/1940-6207.capr-15-0311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063279447
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1161/01.cir.0000016173.98826.88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003756387
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1200/jco.2012.42.0273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008251480
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1210/jc.2007-0359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064289907
222 rdf:type schema:CreativeWork
223 https://doi.org/10.12659/msm.894010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373386
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1371/journal.pone.0177137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085378553
226 rdf:type schema:CreativeWork
227 https://doi.org/10.3109/03602530903208652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038941212
228 rdf:type schema:CreativeWork
229 https://doi.org/10.3389/fphar.2017.00218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085057165
230 rdf:type schema:CreativeWork
231 https://doi.org/10.3390/ijms140918973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014520206
232 rdf:type schema:CreativeWork
233 https://doi.org/10.7314/apjcp.2012.13.10.5105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053630580
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.15667.33 schema:alternateName European Institute of Oncology
236 schema:name Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.
237 Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy.
238 Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, Milan, Italy. harriet.johansson@ieo.it.
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.412008.f schema:alternateName Haukeland University Hospital
241 schema:name Department of Clinical Science, University of Bergen, Bergen, Norway.
242 Hormone Laboratory, Haukeland University Hospital, Bergen, Norway.
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.4868.2 schema:alternateName Queen Mary University of London
245 schema:name Division of Medical Oncology, E.O. Ospedali Galliera, Genoa, Italy.
246 Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK.
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.492959.a schema:alternateName Syneos Health (United States)
249 schema:name Syneos Health, Princeton, NJ, 08540, USA.
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...