Whole genome sequencing identifies high-impact variants in well-known pharmacogenomic genes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Jihoon Choi, Kelan G. Tantisira, Qing Ling Duan

ABSTRACT

More than 1100 genetic loci have been correlated with drug response outcomes but disproportionately few have been translated into clinical practice. One explanation for the low rate of clinical implementation is that the majority of associated variants may be in linkage disequilibrium (LD) with the causal variants, which are often elusive. This study aims to identify and characterize likely causal variants within well-established pharmacogenomic genes using next-generation sequencing data from the 1000 Genomes Project. We identified 69,319 genetic variations within 160 pharmacogenomic genes, of which 8207 variants are in strong LD (r2>0.8) with known pharmacogenomic variants. Of the latter, eight are coding or structural variants predicted to have high impact, with 19 additional missense variants that are predicted to have moderate impact. In conclusion, we identified putatively functional variants within known pharmacogenomics loci that could account for the association signals and represent the missing causative variants underlying drug response phenotypes. More... »

PAGES

127-135

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41397-018-0048-y

DOI

http://dx.doi.org/10.1038/s41397-018-0048-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106945766

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30214008


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Queen's University", 
          "id": "https://www.grid.ac/institutes/grid.410356.5", 
          "name": [
            "Department of Biomedical and Molecular Sciences, Queen\u2019s University, Kingston, ON, Canada", 
            "School of Computing, Queen\u2019s University, Kingston, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Jihoon", 
        "id": "sg:person.010126547424.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126547424.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Channing Division of Network Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA", 
            "Division of Pulmonary and Critical Care Medicine, Brigham and Women\u2019s Hospital and Harvard Medical School, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tantisira", 
        "givenName": "Kelan G.", 
        "id": "sg:person.01365124305.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365124305.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Queen's University", 
          "id": "https://www.grid.ac/institutes/grid.410356.5", 
          "name": [
            "Department of Biomedical and Molecular Sciences, Queen\u2019s University, Kingston, ON, Canada", 
            "School of Computing, Queen\u2019s University, Kingston, ON, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duan", 
        "givenName": "Qing Ling", 
        "id": "sg:person.016515036317.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016515036317.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1164/rccm.200412-1635oe", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001215252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005297170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010939168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2013.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014771271", 
          "https://doi.org/10.1038/clpt.2013.59"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1208/ps020104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016147482", 
          "https://doi.org/10.1208/ps020104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/519795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019061180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021812064", 
          "https://doi.org/10.1038/nature15393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022207002", 
          "https://doi.org/10.1038/clpt.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2011.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026226554", 
          "https://doi.org/10.1038/clpt.2011.185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027752505", 
          "https://doi.org/10.1038/nature02626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027752505", 
          "https://doi.org/10.1038/nature02626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028453204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pgs.09.173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029683368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.137323.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034124863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038308932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/tpj.2012.13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038365649", 
          "https://doi.org/10.1038/tpj.2012.13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040312195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042146639", 
          "https://doi.org/10.1038/clpt.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043771531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/627510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046000424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/fly.19695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046734556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1965304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052809352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3003471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062687354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3949/ccjm.70.4.361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071759586"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "More than 1100 genetic loci have been correlated with drug response outcomes but disproportionately few have been translated into clinical practice. One explanation for the low rate of clinical implementation is that the majority of associated variants may be in linkage disequilibrium (LD) with the causal variants, which are often elusive. This study aims to identify and characterize likely causal variants within well-established pharmacogenomic genes using next-generation sequencing data from the 1000 Genomes Project. We identified 69,319 genetic variations within 160 pharmacogenomic genes, of which 8207 variants are in strong LD (r2>0.8) with known pharmacogenomic variants. Of the latter, eight are coding or structural variants predicted to have high impact, with 19 additional missense variants that are predicted to have moderate impact. In conclusion, we identified putatively functional variants within known pharmacogenomics loci that could account for the association signals and represent the missing causative variants underlying drug response phenotypes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41397-018-0048-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2692020", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2422949", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691631", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1027238", 
        "issn": [
          "1470-269X", 
          "1473-1150"
        ], 
        "name": "The Pharmacogenomics Journal", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "Whole genome sequencing identifies high-impact variants in well-known pharmacogenomic genes", 
    "pagination": "127-135", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fad8e538d8abb36b6369360a1ddcfa28653ac7698aa555d953b6a91e857bea9b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30214008"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101083949"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41397-018-0048-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106945766"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41397-018-0048-y", 
      "https://app.dimensions.ai/details/publication/pub.1106945766"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13087_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41397-018-0048-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0048-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0048-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0048-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41397-018-0048-y'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41397-018-0048-y schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N5b908921ba6e4d04a14aee2917b7e545
4 schema:citation sg:pub.10.1038/clpt.2010.279
5 sg:pub.10.1038/clpt.2011.185
6 sg:pub.10.1038/clpt.2012.96
7 sg:pub.10.1038/clpt.2013.59
8 sg:pub.10.1038/nature02626
9 sg:pub.10.1038/nature15393
10 sg:pub.10.1038/tpj.2012.13
11 sg:pub.10.1208/ps020104
12 https://doi.org/10.1086/519795
13 https://doi.org/10.1093/nar/30.1.163
14 https://doi.org/10.1093/nar/30.1.207
15 https://doi.org/10.1093/nar/gkh103
16 https://doi.org/10.1093/nar/gkr798
17 https://doi.org/10.1101/gr.137323.112
18 https://doi.org/10.1101/gr.1965304
19 https://doi.org/10.1126/science.286.5439.487
20 https://doi.org/10.1126/scitranslmed.3003471
21 https://doi.org/10.1155/2014/627510
22 https://doi.org/10.1164/rccm.200412-1635oe
23 https://doi.org/10.1371/journal.pgen.1000433
24 https://doi.org/10.2217/pgs.09.173
25 https://doi.org/10.3949/ccjm.70.4.361
26 https://doi.org/10.4161/fly.19695
27 schema:datePublished 2019-04
28 schema:datePublishedReg 2019-04-01
29 schema:description More than 1100 genetic loci have been correlated with drug response outcomes but disproportionately few have been translated into clinical practice. One explanation for the low rate of clinical implementation is that the majority of associated variants may be in linkage disequilibrium (LD) with the causal variants, which are often elusive. This study aims to identify and characterize likely causal variants within well-established pharmacogenomic genes using next-generation sequencing data from the 1000 Genomes Project. We identified 69,319 genetic variations within 160 pharmacogenomic genes, of which 8207 variants are in strong LD (r<sup>2</sup>&gt;0.8) with known pharmacogenomic variants. Of the latter, eight are coding or structural variants predicted to have high impact, with 19 additional missense variants that are predicted to have moderate impact. In conclusion, we identified putatively functional variants within known pharmacogenomics loci that could account for the association signals and represent the missing causative variants underlying drug response phenotypes.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N71f757819264426594745f682c30787c
34 Ndc7fb4efc9054f87bba9205da9faf988
35 sg:journal.1027238
36 schema:name Whole genome sequencing identifies high-impact variants in well-known pharmacogenomic genes
37 schema:pagination 127-135
38 schema:productId N25d354fe1dfa4dfe8e5f13ebe11ccef6
39 Na944d10e63ed4c5b9694602585fcc043
40 Nb40aa0be1aba4746a2e038d404a15bd0
41 Nda417896d2a24390b4ccbd614af4e6c8
42 Nf9a35f06fac145689574532c35093ce5
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106945766
44 https://doi.org/10.1038/s41397-018-0048-y
45 schema:sdDatePublished 2019-04-11T14:30
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N117d2b9a459841fbad69bbc4849ebe3d
48 schema:url https://www.nature.com/articles/s41397-018-0048-y
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N117d2b9a459841fbad69bbc4849ebe3d schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N25d354fe1dfa4dfe8e5f13ebe11ccef6 schema:name pubmed_id
55 schema:value 30214008
56 rdf:type schema:PropertyValue
57 N5b908921ba6e4d04a14aee2917b7e545 rdf:first sg:person.010126547424.77
58 rdf:rest Nee82f4c0d2c145f09136592224381223
59 N6e83675027114997b390858f3b6365e0 rdf:first sg:person.016515036317.39
60 rdf:rest rdf:nil
61 N71f757819264426594745f682c30787c schema:volumeNumber 19
62 rdf:type schema:PublicationVolume
63 Na944d10e63ed4c5b9694602585fcc043 schema:name nlm_unique_id
64 schema:value 101083949
65 rdf:type schema:PropertyValue
66 Nb40aa0be1aba4746a2e038d404a15bd0 schema:name readcube_id
67 schema:value fad8e538d8abb36b6369360a1ddcfa28653ac7698aa555d953b6a91e857bea9b
68 rdf:type schema:PropertyValue
69 Nda417896d2a24390b4ccbd614af4e6c8 schema:name doi
70 schema:value 10.1038/s41397-018-0048-y
71 rdf:type schema:PropertyValue
72 Ndc7fb4efc9054f87bba9205da9faf988 schema:issueNumber 2
73 rdf:type schema:PublicationIssue
74 Nee82f4c0d2c145f09136592224381223 rdf:first sg:person.01365124305.67
75 rdf:rest N6e83675027114997b390858f3b6365e0
76 Nf9a35f06fac145689574532c35093ce5 schema:name dimensions_id
77 schema:value pub.1106945766
78 rdf:type schema:PropertyValue
79 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
80 schema:name Biological Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
83 schema:name Genetics
84 rdf:type schema:DefinedTerm
85 sg:grant.2422949 http://pending.schema.org/fundedItem sg:pub.10.1038/s41397-018-0048-y
86 rdf:type schema:MonetaryGrant
87 sg:grant.2691631 http://pending.schema.org/fundedItem sg:pub.10.1038/s41397-018-0048-y
88 rdf:type schema:MonetaryGrant
89 sg:grant.2692020 http://pending.schema.org/fundedItem sg:pub.10.1038/s41397-018-0048-y
90 rdf:type schema:MonetaryGrant
91 sg:journal.1027238 schema:issn 1470-269X
92 1473-1150
93 schema:name The Pharmacogenomics Journal
94 rdf:type schema:Periodical
95 sg:person.010126547424.77 schema:affiliation https://www.grid.ac/institutes/grid.410356.5
96 schema:familyName Choi
97 schema:givenName Jihoon
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126547424.77
99 rdf:type schema:Person
100 sg:person.01365124305.67 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
101 schema:familyName Tantisira
102 schema:givenName Kelan G.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365124305.67
104 rdf:type schema:Person
105 sg:person.016515036317.39 schema:affiliation https://www.grid.ac/institutes/grid.410356.5
106 schema:familyName Duan
107 schema:givenName Qing Ling
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016515036317.39
109 rdf:type schema:Person
110 sg:pub.10.1038/clpt.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022207002
111 https://doi.org/10.1038/clpt.2010.279
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/clpt.2011.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026226554
114 https://doi.org/10.1038/clpt.2011.185
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/clpt.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042146639
117 https://doi.org/10.1038/clpt.2012.96
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/clpt.2013.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014771271
120 https://doi.org/10.1038/clpt.2013.59
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nature02626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027752505
123 https://doi.org/10.1038/nature02626
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nature15393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021812064
126 https://doi.org/10.1038/nature15393
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/tpj.2012.13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038365649
129 https://doi.org/10.1038/tpj.2012.13
130 rdf:type schema:CreativeWork
131 sg:pub.10.1208/ps020104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016147482
132 https://doi.org/10.1208/ps020104
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1086/519795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019061180
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1093/nar/30.1.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028453204
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/nar/30.1.207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005297170
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/nar/gkh103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040312195
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/nar/gkr798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010939168
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1101/gr.137323.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034124863
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1101/gr.1965304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052809352
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1126/science.286.5439.487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038308932
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1126/scitranslmed.3003471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062687354
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1155/2014/627510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046000424
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1164/rccm.200412-1635oe schema:sameAs https://app.dimensions.ai/details/publication/pub.1001215252
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1371/journal.pgen.1000433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043771531
157 rdf:type schema:CreativeWork
158 https://doi.org/10.2217/pgs.09.173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029683368
159 rdf:type schema:CreativeWork
160 https://doi.org/10.3949/ccjm.70.4.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071759586
161 rdf:type schema:CreativeWork
162 https://doi.org/10.4161/fly.19695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046734556
163 rdf:type schema:CreativeWork
164 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
165 schema:name Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
166 Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.410356.5 schema:alternateName Queen's University
169 schema:name Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
170 School of Computing, Queen’s University, Kingston, ON, Canada
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...